python中pickle模块讲解

        在机器学习中,我们常常需要把训练好的模型存储起来,这样在进行决策时直接将模型读出,而不需要重新训练模型,这样就大大节约了时间。Python提供的pickle模块就很好地解决了这个问题,它可以序列化对象并保存到磁盘中,并在需要的时候读取出来,任何对象都可以执行序列化操作。

Pickle模块中最常用的函数为:

(1)pickle.dump(obj, file, [,protocol])

        函数的功能:将obj对象序列化存入已经打开的file中。

       参数讲解:

obj:想要序列化的obj对象。
file:文件名称。
protocol:序列化使用的协议。如果该项省略,则默认为0。如果为负值或HIGHEST_PROTOCOL,则使用最高的协议版本。
(2)pickle.load(file)

        函数的功能:将file中的对象序列化读出。

        参数讲解:

file:文件名称。
(3)pickle.dumps(obj[, protocol])

       函数的功能:将obj对象序列化为string形式,而不是存入文件中。

       参数讲解:

obj:想要序列化的obj对象。
protocal:如果该项省略,则默认为0。如果为负值或HIGHEST_PROTOCOL,则使用最高的协议版本。
(4)pickle.loads(string)

       函数的功能:从string中读出序列化前的obj对象。
     【注】 dump() 与 load() 相比 dumps() 和 loads() 还有另一种能力:dump()函数能一个接着一个地将几个对象序列化存储到同一个文件中,随后调用load()来以同样的顺序反序列化读出这些对象。

     【代码示例】

      pickleExample.py

#coding:utf-8
__author__ = 'MsLili'
#pickle模块主要函数的应用举例
import pickle
dataList = [[1, 1, 'yes'],
            [1, 1, 'yes'],
            [1, 0, 'no'],
            [0, 1, 'no'],
            [0, 1, 'no']]
dataDic = { 0: [1, 2, 3, 4],
            1: ('a', 'b'),
            2: {'c':'yes','d':'no'}}
 
#使用dump()将数据序列化到文件中
fw = open('dataFile.txt','wb')
# Pickle the list using the highest protocol available.
pickle.dump(dataList, fw, -1)
# Pickle dictionary using protocol 0.
pickle.dump(dataDic, fw)
fw.close()
 
#使用load()将数据从文件中序列化读出
fr = open('dataFile.txt','rb')
data1 = pickle.load(fr)
print(data1)
data2 = pickle.load(fr)
print(data2)
fr.close()
 
#使用dumps()和loads()举例
p = pickle.dumps(dataList)
print( pickle.loads(p) )
p = pickle.dumps(dataDic)
print( pickle.loads(p) )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值