高斯滤波详解 python实现高斯滤波

一. 高斯滤波

        高斯滤波是一种线性平滑滤波器,对于服从正态分布的噪声有很好的抑制作用。在实际场景中,我们通常会假定图像包含的噪声为高斯白噪声,所以在许多实际应用的预处理部分,都会采用高斯滤波抑制噪声。

        高斯滤波和均值滤波一样,都是利用一个掩膜和图像进行卷积求解。不同之处在于:均值滤波器的模板系数都是相同的,为1。而高斯滤波器的模板系数,随着距离模板中心距离的增大,系数减小(服从二维高斯分布)。所以,高斯滤波器相比于均值滤波器而言,对图像模糊程度较小,更能保持图像的整体细节。

二维高斯分布

        我们不必纠结于系数,因为它只是一个常数!并不会影响互相之间的比例关系,而且最终都要进行归一化,所以在实际计算时我们忽略它而只计算后半部分 

        其中(x,y)为掩膜内任一点的坐标,(ux,uy)为掩膜内中心点的坐标,在图像处理中可认为是整数;σ是标准差。

        例如:要产生一个3×3的高斯滤波器模板,以模板

Python中可以使用OpenCV库来实现高斯滤波。首先需要导入相应的库,包括cv2、numpy和math。然后读取图片并将其转换为灰度图像。接下来使用cv2.GaussianBlur函数来进行高斯滤波,其中可以指定滤波器的大小和标准差。最后将处理后的图像保存并显示出来。以下是一个示例代码: ```python import cv2 import numpy as np import math img = cv2.imread('paojie.jpg') gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) blurred_img = cv2.GaussianBlur(gray_img, (3, 3), 1.3) cv2.imwrite('blurred_img.jpg', blurred_img) cv2.imshow('Result', blurred_img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 这段代码会读取名为"paojie.jpg"的图片,并将其转换为灰度图像。然后使用大小为(3, 3)、标准差为1.3的高斯滤波器对图像进行滤波。最后将处理后的图像保存为"blurred_img.jpg"并显示出来。 #### 引用[.reference_title] - *1* [Python实现高斯滤波](https://blog.csdn.net/qq_49979147/article/details/121664735)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [高斯滤波详解 python实现高斯滤波](https://blog.csdn.net/Ibelievesunshine/article/details/104881204)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值