网上的tensorflow安装介绍有些混乱,我反复安装总结了如下安装方法,具体如下:
下载Anaconda Pycharm CUDA CUDNN(注意下载的CUDA版本!!!CUDA版本与tensorflow严格对应),CPU环境不用CUDA和CUDNN
安装Anaconda(勾选环境变量)
安装CUDA(可自定义安装路径,否则重装系统后还要再安装CUDA)
解压CUDNN,里面的文件夹拷贝到CUDA安装目录
软件自动创建用户变量(重装系统需要手动添加上):
CUDA_PATH R:\CUDA
CUDA_PATH_V10_0 R:\CUDA
软件自动创建PATH环境变量(重装系统需要手动添加上):
R:\CUDA\bin
R:\CUDA\libnvvp
添加下列路径到PATH环境变量:
R:\CUDA\extras\CUPTI\libx64
R:\CUDA\include
A:简易方法:
PyCharm->Configure->Settings->Project Interpreter->右侧加号->搜索tensorflow或tensorflow-gpu->安装
B:根据网上教程和官方教程整理的方法:
1.在命令行窗口CMD中:
F:\>conda create -n tensorflow python //创建conda环境,安装正式版,如果指定版本可以conda create -n tensorflow python=3.7.3
F:\>activate tensorflow //激活conda环境
如未安装CUDA和CUDNN,可按如下4条命令安装
F:\>conda install cudatoolkit=10.1 cudnn=7.6 //可以这样安装CUDA和CUDNN
F:\>conda install -c nvidia nvcc_linux-64=10.1
F:\>conda install -c conda-forge cudatoolkit-dev=10.1
F:\>pip install pycuda
F:\>pip install tensorflow //安装tensorflow正式版,如果指定版本tensorflow用tensorflow==2.0.0-alpha0代替,不行就pip install --ignore-installed --upgrade tensorflow,下同
或F:\>pip install tensorflow-gpu //GPU环境
下面是用清华源,速度飞快,推荐!!!
F:\>pip install tensorflow -i https://pypi.tuna.tsinghua.edu.cn/simple //CPU环境
或F:\>pip install tensorflow-gpu -i https://pypi.tuna.tsinghua.edu.cn/simple //GPU环境
(多余的命令退出:deactivate,再进入还是activate tensorflow,一般不用)
2.验证
验证TensorFlow安装是否成功,可以在命令行窗口输入python进入python环境,输入以下代码:
F:\>python
>>>import tensorflow as tf //(注意:这时CUDA版本号不对会提示你正确版本号,重新下载,删除系统重装)
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
>>> print(sess.run(hello))
如果能正常输出Hello, TensorFlow!,则安装成功(以上语句可能有各种乱七八糟的输出,不用管)。
3.安装PyCharm,设置解释器
解释器设置为\Anaconda\envs\tensorflow的python.exe 重要!!!(包括每个项目的解释器)
如:pycharm设置:Configure->Settings->Project Interpreter->齿轮->add->System Interpreter->文件夹\Anaconda\envs\tensorflow下的python.exe->OK,OK
每个项目的设置也是:File->Settings->Project:->Project Interpreter->下拉菜单->Anaconda\envs\tensorflow下的python.exe
查看anaconda版本:
F:\>conda -V
anaconda中查看Python版本号:
F:\>python -V #注意V是大写
确认 Python 和 pip 是 64 位:
python3 -c "import platform;print(platform.architecture()[0]);print(platform.machine())"
anaconda和Python升级(CMD中或Anaconda Promot中):
F:\>conda update conda
F:\>conda update anaconda
F:\>activate paddle (关键!)
F:\>conda update python
然后pycharm中重设解释器
查看tensorflow版本号:
F:\>python
>>>import tensorflow as tf
>>>tf.__version__ //查看版本号
>>>tf.__path__ //查看所在文件夹