(权限题) NFLSoj #105: Merging 题解

本博客探讨了一道数据加强版的NFLSoj #105问题,通过分析得出利用Tarjan算法找出边双联通分量,并将原图转化为森林。在树形结构中,选择树的直径与剩余叶子节点来最小化合并次数。最终,通过连接各树的直径实现森林的联通。
摘要由CSDN通过智能技术生成

这道题是codeforces #51F 的数据加强版
感觉应该是状压dp什么的,但数据范围达到了2e4,不得不从其他角度考虑
我们可以发现一些性质:题目最后要形成的是一棵树,那么考虑如果原图中有一个环,那么如果这个环最后没有被缩成一个点,那么始终是不符合题意的,进一步可以发现,这个性质实际上是属于边双联通分量的,所以我么可以先跑一边tarjan,把边双联通分量拉出来缩点,这样原图就变成了一个森林,每个边双联通分量对答案的贡献是 点数-1
接下来考虑一棵树的情况怎么做
我们肯定要选取一条链,先不管我们怎么选出这条链,考虑如果这条链已经被选出了,我们会怎样选取剩下的点使得合并次数最少。我们会发现无论链是什么样的,我们的之后的策略都是一样的:应该保留剩下的点中所有的叶子节点并合并其他的点,这里给出一个简短的证明:
这样一棵树的形态是上面一条长链,链上的每个点上挂着若干棵子树
先证明可行性:选取这些子树的叶子节点显然是符合题意的,我们只要将其他的点和他对应的链上的点合并就好
再证明最优性:假设存在一种方案使得选取的点比这种方法多,那么一定会存在某两个点u,v,其中u是v的祖先,这样的话v到链的距离必定大于1,矛盾
所以,在这样固定的策略下,我们应该选取最长的链,即树的直径,总结一下,在一棵树中我们的选取方案应该是树的直径+其余的叶子节点
最后我们考虑如何使得森林联通,首先要使得森林联通,至少需要子树个数-1次合并操作,而且这样的次数一定是可行的,因为我们可以将每棵树的直径连起来,一定是符合题意的
这样我们就做完了此题

#include <cstdio>
#include <iostream>
#include <cstring>
#include <string>
#include <cstdlib>
#include <utility>
#include <cmath>
#include <bitset>
#include <cctype>
#include <sstream>
#include <vector>
#include <stack>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <deque>
#define LL long long
#define LB long double
#define Pair pair<int,int>
#define pLL pair<LL,LL>
#define pii pair<double,double>
#define x first
#define
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值