CTRW的化学主方程推导(下)

书接上回:
CTRW的化学主方程推导(上)

定义

m s m_{s} ms:代表不同物种的个数
m r m_{r} mr:代表不同反应的个数,物种与反应共同组成一个反应系统。
S j S_{j} Sj:代表不同的物种, j j j的取值从1到 m s m_{s} ms
n j n_{j} nj:物种 S j S_{j} Sj对应的粒子数
n = ( n 1 , ⋯   , n m s ) T \mathbf{n}=\left(n_{1}, \cdots, n_{m_{s}}\right)^{\mathrm{T}} n=(n1,,nms)T:粒子数目的状态向量
r i j ∈ N ( p i j ∈ N ) r_{i j} \in \mathbb{N}\left(p_{i j} \in \mathbb{N}\right) rijN(pijN):经过反应 i i i n j n_{j} nj的变化量。
s j ˉ = p i j − r i j s_{\bar{j}}=p_{i j}-r_{i j} sjˉ=pijrij:化学计量系数,代表物种 j j j经过反应 i i i后的粒子数目变化
根据以上定义,我们可以把反应 i i i对于状态空间的影响表示为 ∑ j r i j S j → ∑ j p i j S j \sum_{j} r_{i j} S_{j} \rightarrow \sum_{j} p_{i j} S_{j} jrijSjjpijSj

推广的化学主方程

上一回我们得到了这条式子:
P ( n , t ) = ∫ 0 t ∑ k = 0 ∞ R k ( n , t ′ ) ∑ i = 1 m r ∫ t − t ′ ∞ ϕ i ( t ′ ′ ; n ) d t ′ ′ d t ′ P(\mathbf{n}, t)=\int_{0}^{t} \sum_{k=0}^{\infty} R_{k}\left(\mathbf{n}, t^{\prime}\right) \sum_{i=1}^{m_{r}} \int_{t-t^{\prime}}^{\infty} \phi_{i}\left(t^{\prime \prime} ; \mathbf{n}\right) d t^{\prime \prime} d t^{\prime} P(n,t)=0tk=0Rk(n,t)i=1mrttϕi(t;n)dtdt
其中, R k ( n , t ) = ⟨ δ n , N k δ ( T k − t ) ⟩ R_{k}(\mathbf{n}, t)=\left\langle\delta_{\mathbf{n}, \mathbf{N}_{k}} \delta\left(T_{k}-t\right)\right\rangle Rk(n,t)=δn,Nkδ(Tkt)是经历 k k k步反应后在 t t t时刻状态为 n \mathbf{n} n的联合密度, R ( n , t ) = ∑ k = 0 ∞ R k ( n , t ) R(\mathbf{n}, t)=\sum_{k=0}^{\infty} R_{k}(\mathbf{n}, t) R(n,t)=k=0Rk(n,t)是经历任意步反应后在 t t t时刻状态为 n \mathbf{n} n的概率密度。此外,我们还得到了一些递增关系。

那么接下来我们就继续从这里入手,递增关系暗含了未来的状态只取决于当前的状态,与过去历史的状态无关,所以这是一个关于步数 k k k的马尔科夫过程,对应的联合概率密度就是 R k ( n , t ) R_{k}(\mathbf{n}, t) Rk(n,t)满足 Chapamn-Kolmogorov 方程:
R k + 1 ( n , t ) = ∫ 0 t ∑ i = 1 m r R k ( n − s i , t ′ ) ϕ i ( t − t ′ ; n − s i ) d t ′ R_{k+1}(\mathbf{n}, t)=\int_{0}^{t} \sum_{i=1}^{m_{r}} R_{k}\left(\mathbf{n}-\mathbf{s}_{i}, t^{\prime}\right) \phi_{i}\left(t-t^{\prime} ; \mathbf{n}-\mathbf{s}_{i}\right) d t^{\prime} Rk+1(n,t)=0ti=1mrRk(nsi,t)ϕi(tt;nsi)dt
继续记 R 0 ( n , t ) = ⟨ δ n , N 0 δ ( T 0 − t ) ⟩ = P ( n , 0 ) δ ( t ) R_{0}(\mathbf{n}, t)=\left\langle\delta_{\mathbf{n}, \mathbf{N}_{0}} \delta\left(T_{0}-t\right)\right\rangle=P(\mathbf{n}, 0) \delta(t) R0(n,t)=δn,N0δ(T0t)=P(n,0)δ(t),注意到 P ( n , t ) P(\mathbf{n}, t) P(n,t)的表达式以及Chapamn-Kolmogorov方程都是卷积形式,所以我们可以使用Laplace 变换得到:
R ~ ( n , λ ) = P ( n , 0 ) + ∑ i = 1 m r R ~ ( n − s i , λ ) ϕ ~ i ( λ ; n − s i ) P ~ ( n , λ ) = R ~ ( n , λ ) 1 − ∑ i = 1 m r ϕ ~ i ( λ ; n ) λ \tilde{R}(\mathbf{n}, \lambda)=P(\mathbf{n}, 0)+\sum_{i=1}^{m_{r}} \tilde{R}\left(\mathbf{n}-\mathbf{s}_{i}, \lambda\right) \tilde{\phi}_{i}\left(\lambda ; \mathbf{n}-\mathbf{s}_{i}\right) \\ \tilde{P}(\mathbf{n}, \lambda)=\tilde{R}(\mathbf{n}, \lambda) \frac{1-\sum_{i=1}^{m_{r}} \tilde{\phi}_{i}(\lambda ; \mathbf{n})}{\lambda} R~(n,λ)=P(n,0)+i=1mrR~(nsi,λ)ϕ~i(λ;ns

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值