很显然的做法是莫队+树状数组,但是我T了。。是我姿势不对么。。。可能常数起飞了吧。。比较好的方法是莫队+分块。对权值分块。那么每个询问就变成了求区间和,可以在O(sqrt(N))解决,而每次莫队的转移则变成了O(1),那么总的复杂度就是O((N+M)*sqrt(N))了,可以过。至于分块大小,我试了试sqrt(n),sqrt(n/2),sqrt(n*2/3),运行时间都差不多。。。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
#define N 100005
#define M 1000005
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
int n,m,a[N],c[N],block=0,ans[M],sum[1000],bl[N];
struct data{
int l,r,x,y,id;
}q[M];
inline bool cmp(data x,data y){
return bl[x.l]==bl[y.l]?x.r<y.r:bl[x.l]<bl[y.l];
}
bool vis[N];
inline void update(int x){
if(vis[x]){
c[a[x]]--;if(!c[a[x]]) sum[bl[a[x]]]--;
}
else{
c[a[x]]++;if(c[a[x]]==1) sum[bl[a[x]]]++;
}vis[x]^=1;
}
int query(int x,int y){
int res=0;
if(bl[x]==bl[y]){
for(int i=x;i<=y;++i) if(c[i]) ++res;return res;
}
else{
for(int i=x;i<=(bl[x]+1)*block;++i) if(c[i]) ++res;
for(int i=bl[y]*block+1;i<=y;++i) if(c[i]) ++res;
for(int i=bl[x]+1;i<bl[y];++i) res+=sum[i];
return res;
}
}
int main(){
// freopen("a.in","r",stdin);
n=read();m=read();block=sqrt(n*2.0/3);
for(int i=1;i<=n;++i) bl[i]=(i-1)/block;
for(int i=1;i<=n;++i) a[i]=read();
for(int i=1;i<=m;++i){
q[i].l=read();q[i].r=read();q[i].x=read();q[i].y=read();
q[i].id=i;
}sort(q+1,q+m+1,cmp);int l=1,r=0;
for(int i=1;i<=m;++i){
for(;l<q[i].l;++l) update(l);
for(;l>q[i].l;--l) update(l-1);
for(;r>q[i].r;--r) update(r);
for(;r<q[i].r;++r) update(r+1);
ans[q[i].id]=query(q[i].x,q[i].y);
}
for(int i=1;i<=m;++i) printf("%d\n",ans[i]);
return 0;
}