首先不难证明吃饭慢的人一定要先打饭。(吃饭快的排在他前面,那只会使最后所有人吃完饭的时间更长)因此,我们先以吃饭时间由大到小排序,这样就可以只用排队时间来表示状态了。f[i][j]表示前i个人在1号口打饭排队所花的时间为j时所有人吃完饭的最小时间,sum[i]为排队时间的前缀和,则在2号口打饭排队所花时间为sum[i]-j.对于第i个人,无非两种决策:
1.在1号口打饭,则f[i][j]=max{f[i-1][j-a[i]],j+b[i]}
2.在2号口打饭,则f[i][j]=max{f[i-1][j],sum[i]-j+b[i]}
取最小值即可。考虑初值:一开始只有前0个人在1号口排队时间为0才合法,所以f[0][0]=0,其他均不合法,给inf。时间复杂度
O(n3)
tips:一开始没敢用排队时间做状态多思考了一会,其实认真分析一下,排队时间最多不过是200*100,是
n2
级别的,完全可以承担。
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 202
#define inf 0x3f3f3f3f
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
int n,sum[N],f[N][N*N];//f[i][j]琛//f[i][j]表示前i个人在1号口打饭排队所花的时间为j时所有人吃完饭的最小时间
struct data{
int a,b;
}a[N];
inline bool cmp(data x,data y){
return x.b==y.b?x.a<y.a:x.b>y.b;
}
inline int min(int x,int y){return x<y?x:y;}
inline int max(int x,int y){return x>y?x:y;}
int main(){
// freopen("a.in","r",stdin);
n=read();
for(int i=1;i<=n;++i) a[i].a=read(),a[i].b=read();
std::sort(a+1,a+n+1,cmp);
for(int i=1;i<=n;++i) sum[i]=sum[i-1]+a[i].a;
memset(f,0x3f,sizeof(f));f[0][0]=0;
for(int i=1;i<=n;++i)
for(int j=0;j<=sum[i];++j){
f[i][j]=max(f[i-1][j],sum[i]-j+a[i].b);//i在二号口打饭
if(j>=a[i].a) f[i][j]=min(f[i][j],max(f[i-1][j-a[i].a],j+a[i].b));//i在一号口打饭
}
int ans=inf;
for(int j=0;j<=sum[n];++j) ans=min(ans,f[n][j]);
printf("%d\n",ans);
return 0;
}