题目大意:有n个人,2个窗口,每个人有固定的吃饭和打饭时间,到1窗口和2窗口的打饭时间和吃饭时间都是一样的,问所有人吃完饭的最早时间
题解:如果只有一个窗口的话就是蓝书第一章某贪心例题,按照吃饭时间降序排序
然后2个窗口……保留贪心策略,dp出奇迹,但是我不知道怎么定义状态……后来发现不需要知道某个人在哪个窗口,只需要知道某个窗口的时间就行了……
两个窗口独立,可以分开考虑
f[i][j][k]表示前i个人,1号窗口打饭总时间为j(这里不包括吃饭),2号窗口打饭总时间为k的最优解
sum[]维护打饭时间的前缀和
然后发现j+k=sum[i],可以减掉1维,转移考虑第i个人进入1号/2号
i在1号打饭,f[i][j]=max(f[i−1][j−a[i]],j+b[i]),1号打饭时间+吃饭
i在2号打饭,f[i][j]=max(f[i−1][j],sum[i]−j+b[i]),2号打饭时间+吃饭
初始值:f[0][0]=0,其他的f[i][j]=INF
我的收获:分清楚有用的状态,大胆设计……
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int M=205;
#define INF 0x3f3f3f3f
int n,sum[M];
int f[M][M*M];
struct abc{int d,e;}a[M];
bool operator <(abc x,abc y){return x.e>y.e;}
void DP()
{
memset(f,0x3f,sizeof(f));f[0][0]=0;
for(int i=1;i<=n;i++)
for(int j=0;j<=sum[i];j++){
f[i][j]=min(f[i][j],max(f[i-1][j],sum[i]-j+a[i].e));
if(j>=a[i].d) f[i][j]=min(f[i][j],max(f[i-1][j-a[i].d],j+a[i].e));
}
}
void work()
{
DP();
int ans=INF;
for(int i=0;i<=sum[n];i++) ans=min(ans,f[n][i]);
cout<<ans<<endl;
}
void init()
{
cin>>n;
for(int i=1;i<=n;i++) scanf("%d%d",&a[i].d,&a[i].e);
sort(a+1,a+1+n);
for(int i=1;i<=n;i++) sum[i]=sum[i-1]+a[i].d;
}
int main()
{
init();
work();
return 0;
}