bzoj4953 [Wf2017]Posterize(区间dp)

首先把原题转化一下,就是有256个位置,有n个位置上有人,你可以在k个位置上插旗,每个人都会走到离自己最近的旗子,求所有人走的距离的平方和的最小值。f[i][j]表示前i个位置,放了j个旗子,其中第i个位置一定放了旗子的最小平方误差,则f[i][j]=min{f[k][j-1]+w[k][i]|j-1<=k< i},其中w[k][i]表示k~i这一段只有k和i位置放了旗子的平方误差。最后统计答案,枚举最后一个旗子插的位置i,加上i之后的人都要走到i位置的距离平方和,取最小值,即为答案。复杂度 O(n3) ,可以优化,待研究。

#include <cstdio>
#include <cstring>
#define N 260
#define ll long long
inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int n,kk,a[N];
ll w[N][N],f[N][N];//f[i][j]表示前i个位置,放了j个旗子,其中第i个位置一定放了旗子的最小平方误差 
inline ll min(ll x,ll y){return x<y?x:y;}
int main(){
//  freopen("a.in","r",stdin);
    n=read();kk=read();
    if(kk>=n){puts("0");return 0;}
    for(int i=1;i<=n;++i){
        int x=read();a[x+1]=read();
    }
    for(int i=1;i<=256;++i)
        for(int j=i+2;j<=256;++j){//i~j这一段只在i和j位置放旗子的平方误差 
            int mid=i+j>>1;
            for(int k=i+1;k<=j-1;++k){
                if(k>mid) w[i][j]+=(ll)(j-k)*(j-k)*a[k];
                else w[i][j]+=(ll)(k-i)*(k-i)*a[k];
            }
        }
    for(int i=1;i<=256;++i)
        for(int j=1;j<i;++j)//只放一个旗子 
            f[i][1]+=(ll)(i-j)*(i-j)*a[j];
    for(int j=2;j<=kk;++j)
        for(int i=j;i<=256;++i){
            f[i][j]=f[i-1][j-1];
            for(int k=j-1;k<i-1;++k)//在k放上一个旗子 
                f[i][j]=min(f[i][j],f[k][j-1]+w[k][i]);
        }
    ll ans=f[256][kk];
    for(int i=255;i>=kk;--i){//统计答案,枚举最后一个旗子插的位置 
        ll tmp=0;
        for(int j=256;j>i;--j) tmp+=(ll)(j-i)*(j-i)*a[j];
        ans=min(ans,f[i][kk]+tmp);
    }
    printf("%lld\n",ans);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值