区间dp(石子合并,BZOJ 1260 涂色)

石子合并

思路:
在这里插入图片描述
代码:

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 310;
int n;
int s[N];
int f[N][N];
int main(){
    scanf("%d", &n);
    memset(f,0x3f,sizeof(f));
    for (int i = 1; i <= n; i ++ ){
        scanf("%d", &s[i]),s[i] += s[i - 1];
        f[i][i]=0;//转移前是0
    }
    for(int l=1;l<n;l++)//区间dp
    for(int i=1,j=1+l;j<=n;i++,j++)
	for(int k=i;k<j;k++)
		f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]+s[j]-s[i-1]);
    printf("%d\n", f[1][n]);
    return 0;
}

[CQOI2007]涂色paint

题意:

开始你有一个空白字符串,每次可以选择一段区间[l,r]进行涂色,问最少涂色几次会形成字符串s(涂色会覆盖)

思路:

刷子的特点是每次给相邻区间染一样的颜色,我们假设刚开始每个点都是单独刷的,即f[i][i]=1,之后用区间dp来倒推:如何优化涂色方式来实现涂色次数最少

f [ i ] [ j ] f[i][j] f[i][j]表示 i ~ j i~j ij区间内变成目标状态刷的次数

一个区间左右两端的颜色可能是什么关系:

  • 相同的:那么就是说我们只要这个区间直接刷上这个颜色,那么其中一个端点就是白刷的,因为没有特地的去刷它,那就不管其中一个点了,我们就只要把问题抛给 f [ i + 1 ] [ j ] f[i+1][j] f[i+1][j] f [ i ] [ j − 1 ] f[i][j-1] f[i][j1]就可以了,所以有: f [ i ] [ j ] = m i n ( f [ i + 1 ] [ j ] , f [ i ] [ j − 1 ] ) f[i][j]=min(f[i+1][j],f[i][j-1]) f[i][j]=min(f[i+1][j],f[i][j1])
  • 不同的:把问题抛给 f [ i ] [ k ] f[i][k] f[i][k]+ f [ k + 1 ] [ j ] f[k+1][j] f[k+1][j]就好

代码:

#include<iostream>
#include<cstring>
using namespace std;
int f[1000][1000];
char s[10000];
int main(){
    cin>>s+1;//s是地址 
    int n=strlen(s+1);
    memset(f,0x3f3f3f3f,sizeof(f));
    for(int i=1;i<=n;i++) f[i][i]=1;//给一个地方刷当然是刷一次
    for(int l=1;l<n;l++)//区间dp
    for(int i=1,j=1+l;j<=n;i++,j++){
        if(s[i]==s[j])
        	f[i][j]=min(f[i+1][j],f[i][j-1]);
        else{
            for(int k=i;k<j;k++)
            	f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]);
        }
    }
    cout<<f[1][n];
    return 0;
}

借鉴文章

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值