给定一棵有根树(注意跟不一定是1.。。),求有序对(u,v)满足的个数:
1.u是v的祖先
2.a[u]*a[v]<=k。
我们在对树进行dfs时,做到v点,此时在我们的dfs栈中的点正是v的祖先,一个不多,一个不少,我们只需在这些点中找到小于等于k/a[v]的点。显然可以把权值离散化了,用线段树来维护
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 100010
inline ll read(){
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
int tst,n,a[N],aa[N],m,h[N],num,in[N];
ll kk,ans;
struct edge{
int to,next;
}data[N];
struct node{
int x;
}tree[N<<2];
void build(int p,int l,int r){
tree[p].x=0;
if(l==r) return;int mid=l+r>>1;
build(p<<1,l,mid);build(p<<1|1,mid+1,r);
}
void add(int p,int l,int r,int x,int val){
tree[p].x+=val;
if(l==r) return;
int mid=l+r>>1;
if(x<=mid) add(p<<1,l,mid,x,val);
else add(p<<1|1,mid+1,r,x,val);
}
int qsum(int p,int l,int r,int x,int y){
if(x>y) return 0;
if(x<=l&&r<=y) return tree[p].x;
int mid=l+r>>1,res=0;
if(x<=mid) res+=qsum(p<<1,l,mid,x,y);
if(y>mid) res+=qsum(p<<1|1,mid+1,r,x,y);
return res;
}
void dfs(int x){
ans+=qsum(1,1,m,1,upper_bound(aa+1,aa+m+1,kk/a[x])-aa-1);
add(1,1,m,lower_bound(aa+1,aa+m+1,a[x])-aa,1);
for(int i=h[x];i;i=data[i].next) dfs(data[i].to);
add(1,1,m,lower_bound(aa+1,aa+m+1,a[x])-aa,-1);
}
int main(){
// freopen("a.in","r",stdin);
tst=read();
while(tst--){
n=read();kk=read();num=0;memset(h,0,sizeof(h));ans=0;memset(in,0,sizeof(in));
for(int i=1;i<=n;++i) a[i]=aa[i]=read();
sort(aa+1,aa+n+1);m=unique(aa+1,aa+n+1)-aa-1;
for(int i=1;i<n;++i){
int x=read(),y=read();data[++num].to=y;data[num].next=h[x];h[x]=num;in[y]++;
}build(1,1,m);
for(int i=1;i<=n;++i) if(!in[i]) dfs(i);//人家可没说根是1.。。
printf("%lld\n",ans);
}
return 0;
}