bzoj1016 [JSOI2008]最小生成树计数(kruskal+dfs+乘法原理)

首先需要一个结论,对于一个图的不同最小生成树,每种方案所包含的每种权值的边的数量一定一致。换句话说,把每种方案包含的所有边的边权都写下来,写出来的序列一定都一样。关于这个结论的说明放在最后。
这样的话,可以先做一遍kruskal,记下每种边权的使用次数,然后对于每种边权进行dfs,判断有多少种合法的组合方式【一种方案合法意味着:1.加入每条边时,边的两端点一定属于不同的并查集,也就是仍然要符合kruskal的要求。2.加入的总边数等于开始统计的使用次数。第一条要求也就决定了不能用组合数进行计算,只能dfs,而因为相同边权的边不超过10,再加上一些最简单的剪枝,运行速度很快。】,然后用乘法原理即可。
注意:
1.dfs的时候要回溯,所以这里的并查集不能进行路径压缩。
2.处理完每种边之后要把这些边加上去,这才是kruskal的过程。
3.考虑图不连通,即不存在最小生成树的情况。
最后说一下原理。考虑kruskal的过程,只有当这一权值的边全部考虑之后才会考虑权值比他大的边。举个最简单的例子,假设有两种方案,第一种方案有边x1,x4,第二种有边x2,x3,且x1< x2< x3< x4。因为一条边只能连接两个连通块,那么x2,x3中一定有一个能起到x4的作用,那么这个能起作用的点和x1组成的方案才是最小生成树。
既然这样,不同的方案从何而来呢?来自于相同的权值的边,在排序后的顺序不同,而他们又起着相同的作用(也就是连接相同的联通块)【因为如果作用不一样的话,他们应该都被纳入方案】,那么先考虑这个和先考虑那个就会得出不同的方案。
于是,我们对每一组权值相同的边,知道了他们总的使用次数以后,进行暴力的枚举统计方案数。因为我们知道,不管怎么选,最后的结果,也就是给后面带来的影响,都是相同的【因为如果影响不同,那么就不应该现在从中挑选,当初kruskal的时候应该都选进来。】
原文地址:http://blog.csdn.net/sdfzyhx/article/details/52075151

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 110
#define M 1010
#define mod 31011
inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int n,m,cnt=0,tot=0,fa[N],ans=1,sum=0;
struct edge{
    int x,y,val;
}e[M];
struct node{
    int l,r,num;//同一权值的左起位置和右至位置,这一权值的边在MST出现的数目 
}a[M];
inline bool cmp(edge x,edge y){
    return x.val<y.val;
}
inline int find(int x){return x==fa[x]?x:find(fa[x]);}
void dfs(int i,int x,int k){//k--在MST中出现的次数 
    if(x==a[i].r+1){
        if(k==a[i].num) sum++;return;
    }
    int xx=find(e[x].x),yy=find(e[x].y);
    if(xx!=yy){//选这条边 
        fa[xx]=yy;dfs(i,x+1,k+1);fa[xx]=xx;
    }dfs(i,x+1,k);//不选这条边 
}
int main(){
//  freopen("a.in","r",stdin);
    n=read();m=read();
    for(int i=1;i<=m;++i) e[i].x=read(),e[i].y=read(),e[i].val=read();
    sort(e+1,e+m+1,cmp);for(int i=1;i<=n;++i) fa[i]=i;
    for(int i=1;i<=m;++i){
        if(e[i].val!=e[i-1].val){a[cnt].r=i-1;a[++cnt].l=i;}
        int xx=find(e[i].x),yy=find(e[i].y);
        if(xx!=yy){
            fa[xx]=yy;a[cnt].num++;tot++;
        }
    }a[cnt].r=m;
    if(tot!=n-1){puts("0");return 0;}
    for(int i=1;i<=n;++i) fa[i]=i;
    for(int i=1;i<=cnt;++i){
        sum=0;dfs(i,a[i].l,0);ans=ans*sum%mod;
        for(int j=a[i].l;j<=a[i].r;++j){
            int xx=find(e[j].x),yy=find(e[j].y);
            if(xx!=yy) fa[xx]=yy;
        }
    }printf("%d\n",ans);
    return 0;
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值