先预处理出g[i]表示a[1]…a[i]的gcd,我们贪心的发现,肯定是从后往前做,这样不会影响前面。每次我们分解这个gcd,看他是负贡献还是正贡献,决定是不是要除掉它。这样的操作之后,我们分解每一个剩下的数,统计答案即可。用线性素数筛提前把素数筛出来,复杂度应该是小于O(n sqrt(1e9))的。
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 5010
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
int n,m,prime[100000],tot=0,a[N],g[N],ans=0;
bool notprime[100010];
map<int,bool>bad;
void Prime(){
notprime[1]=1;
for(int i=2;i<=100000;++i){
if(!notprime[i]) prime[++tot]=i;
for(int j=1;prime[j]*i<=100000;++j){
notprime[prime[j]*i]=1;
if(i%prime[j]==0) break;
}
}
}
inline int gcd(int x,int y){
return y==0?x:gcd(y,x%y);
}
int main(){
// freopen("a.in","r",stdin);
n=read();m=read();
for(int i=1;i<=n;++i) a[i]=read();g[1]=a[1];
for(int i=1;i<=m;++i) bad[read()]=1;
for(int i=2;i<=n;++i) g[i]=gcd(g[i-1],a[i]);
int tmp=1,res=0;
for(int i=n;i>=1;--i){
g[i]/=tmp;a[i]/=tmp;if(g[i]==1) continue;
int xx=g[i],num[2]={0,0};
for(int x=2;x*x<=g[i];++x){
if(notprime[x]||xx%x!=0) continue;
while(xx%x==0){
xx/=x;num[bad[x]]++;
}
}if(xx>1) num[bad[xx]]++;
if(num[1]>=num[0]) tmp*=g[i],a[i]/=g[i];
}for(int i=1;i<=n;++i){int xx=a[i];
for(int x=2;x*x<=a[i];++x){
if(notprime[x]||xx%x!=0) continue;
while(xx%x==0){
xx/=x;bad[x]?ans--:ans++;
}
}if(xx>1) bad[xx]?ans--:ans++;
}printf("%d\n",ans);
return 0;
}