首先线性基很妙啊。可以来这里学习下:传送门
然后板子基本就是高斯消元?蒟蒻还不会高斯消元。。。待填坑。反正就是用log w级别的数,代替了原来的n个数。在什么意义上这两个东西相等呢?就是这log w个数(叫做线性基),通过线性组合可以得到所有的n个数。一般用于求解异或和最值的问题。板子见 传送门。此题是求第k小的异或和。根据线性基的性质,我们可以得到第k小的就是:把m个线性基从小到大排序,分别叫
v0,v1,...vm−1
,k的二进制表示为
(bx....b1b0)
,则答案就是
∑xi=0vi∗bi
。注意特判0.
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 10010
inline ll read(){
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
int tst,n;
ll b[62],v[62],a[N];
inline void getbase(){
for(int i=1;i<=n;++i)
for(int j=60;j>=0;--j){
if(!(a[i]>>j)) continue;
if(b[j]) a[i]^=b[j];
else{
b[j]=a[i];
for(int k=j-1;k>=0;--k) if(b[k]&&(b[j]>>k &1)) b[j]^=b[k];
for(int k=j+1;k<=60;++k) if(b[k]&&(b[k]>>j &1)) b[k]^=b[j];break;
}
}
}
int main(){
// freopen("a.in","r",stdin);
tst=read();
for(int ofo=1;ofo<=tst;++ofo){
n=read();for(int i=1;i<=n;++i) a[i]=read();
int num=0;memset(b,0,sizeof(b));bool zero=0;
getbase();for(int i=60;i>=0;--i) if(b[i]) v[++num]=b[i];
ll tot=(1LL<<num)-1;if(num<n) zero=1;
printf("Case #%d:\n",ofo);int owo=read();
while(owo--){
ll x=read(),res=0;if(zero) x--;if(!x){puts("0");continue;}
if(x>tot){puts("-1");continue;}
for(int cnt=num;x;x>>=1,--cnt)
if(x&1) res^=v[cnt];printf("%lld\n",res);
}
}return 0;
}