bzoj3029 守卫者的挑战(概率dp)

本题关键在于注意到背包容量超过n以后是没有什么用的,视作n就好了。我是对于碎片局和背包局分开dp了。
dp1[i][j],对于碎片局,前i场赢j场的概率。
dp2[i][j][k],对于背包局,前i场赢j场,背包总容量>=k的概率

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 210
inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int n,L,K,a2[N],p[N],n1=0,n2=0;
double dp1[N][N],p1[N],p2[N],dp2[N][N][N],ans=0;
//dp1[i][j],对于碎片局,前i场赢j场的概率。
//dp2[i][j][k],对于背包局,前i场赢j场,背包总容量>=k的概率
int main(){
//  freopen("a.in","r",stdin);
    n=read();L=read();K=read();K=min(K,n);
    for(int i=1;i<=n;++i) p[i]=read();
    for(int i=1;i<=n;++i){
        int x=read();if(x==-1) p1[++n1]=p[i]*0.01;
        else a2[++n2]=x,p2[n2]=p[i]*0.01;
    }dp1[0][0]=1;
    for(int i=1;i<=n1;++i)
        for(int j=0;j<=i;++j){
            dp1[i][j]=dp1[i-1][j]*(1-p1[i]);
            if(j>0) dp1[i][j]+=dp1[i-1][j-1]*p1[i];
        }
    for(int k=0;k<=K;++k) dp2[0][0][k]=1;
    for(int i=1;i<=n2;++i)
        for(int j=0;j<=i;++j)
            for(int k=0;k<=n;++k){
                dp2[i][j][k]=dp2[i-1][j][k]*(1-p2[i]);
                if(j>0) dp2[i][j][k]+=dp2[i-1][j-1][max(k-a2[i],0)]*p2[i];
            }
    for(int i=0;i<=n1;++i)
        for(int j=max(L-i,0);j<=n2;++j)
            ans+=dp1[n1][i]*dp2[n2][j][i];
    printf("%.6lf\n",ans);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值