首先对于这种只出现一次才有用的问题,我们先处理出每个点的有效区间L[i]~R[i]。在这里,我们定义L[i]为a[i]上一次出现的位置,R[i]为a[i]下一次出现的位置。则对于每个询问l,r,怎样的位置上的数是满足条件的呢?需要满足三个条件,即:
1.l<=i<=r
2.L[i]< l
3.R[i]> r
如果我们把每个位置上的数看做一个三维空间的点,即P[i](i,L[i],R[i]),权值为a[i],我们每次询问的就是一个子空间中的最大值。可以用K-D tree来维护。复杂度O
(m∗n23)
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 100010
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
int n,m,a[N],last[N],L[N],R[N],rt=0,D=0,ans=0,X,Y;
struct point{
int d[3],v;
int& operator[](int x){return d[x];}
friend bool operator<(point a,point b){return a[D]<b[D];}
}P[N];
struct node{
point x;int lc,rc,mx[3],mn[3],mxv;
}tr[N];
inline void update(int p){
int l=tr[p].lc,r=tr[p].rc;
for(int i=0;i<3;++i) tr[p].mn[i]=min(tr[p].mn[i],min(tr[l].mn[i],tr[r].mn[i]));
for(int i=0;i<3;++i) tr[p].mx[i]=max(tr[p].mx[i],max(tr[l].mx[i],tr[r].mx[i]));
tr[p].mxv=max(tr[p].x.v,max(tr[l].mxv,tr[r].mxv));
}
inline void build(int &p,int l,int r,int op){
int mid=l+r>>1;p=mid;D=op;
nth_element(P+l,P+mid,P+r+1);tr[p].x=P[mid];tr[p].mxv=P[mid].v;
for(int i=0;i<3;++i) tr[p].mx[i]=tr[p].mn[i]=tr[p].x[i];
if(l<mid) build(tr[p].lc,l,mid-1,(op+1)%3);
if(r>mid) build(tr[p].rc,mid+1,r,(op+1)%3);update(p);
}
inline bool jud(point a){
return a[0]>=X&&a[0]<=Y&&a[1]<X&&a[2]>Y;
}
inline bool calc(int p){
if(!p) return 0;
if(tr[p].mn[0]>Y||tr[p].mx[0]<X) return 0;
if(tr[p].mn[1]>=X||tr[p].mx[2]<=Y) return 0;return 1;
}
inline void ask(int p){
if(jud(tr[p].x)) ans=max(ans,tr[p].x.v);
int dl=0,dr=0;
if(calc(tr[p].lc)) dl=tr[tr[p].lc].mxv;
if(calc(tr[p].rc)) dr=tr[tr[p].rc].mxv;
if(dl>dr){
if(dl>ans) ask(tr[p].lc);
if(dr>ans) ask(tr[p].rc);
}else{
if(dr>ans) ask(tr[p].rc);
if(dl>ans) ask(tr[p].lc);
}
}
int main(){
// freopen("a.in","r",stdin);
n=read();m=read();
for(int i=0;i<3;++i) tr[0].mx[i]=-inf,tr[0].mn[i]=inf;
for(int i=1;i<=n;++i){
a[i]=read();R[last[a[i]]]=i;L[i]=last[a[i]];last[a[i]]=i;
}for(int i=1;i<=n;++i) if(!R[i]) R[i]=n+1;
for(int i=1;i<=n;++i) P[i][0]=i,P[i][1]=L[i],P[i][2]=R[i],P[i].v=a[i];
build(rt,1,n,0);
while(m--){
X=(read()+ans)%n+1;Y=(read()+ans)%n+1;if(X>Y) swap(X,Y);
ans=0;ask(rt);printf("%d\n",ans);
}return 0;
}