bzoj3434 [Wc2014]时空穿梭(莫比乌斯函数+多项式乘法)

蒟蒻我第一步共线就没想出来x暴力dp T飞。直接爆零qaq
我们记C个点分别为 Ci ,V为 {v1,v2...vn} ,令 Bi=CiCi1 。则我们发现 Bi=(titi1)V ,也就是说每一个B的各维坐标都是成比例的。我们设第i维的坐标极差为 Δxi CnC1 ),,则这条直线上最多有(除了起终点) gcd(Δxi)1 个点。我们要从中再选出c-2个点。而这样的直线起点有 (MiΔxi) 种。显然每一维的极差最大为 Mi1 ,我们设为 mi ,并令 m=min{mi} 所以我们枚举所有的极差,得到

Ans=Δx1=1m1Δx2=1m2...Δxn=1mnCc2gcd(x1,x2,...,xn)1i=1n(MiΔxi)

d=gcd(x1,x2,...,xn) ,则

Ans=d=1mCc2d1Δx1=1m1dΔx2=1m2d...Δxn=1mnd[gcd(x1,x2,...,xn)==1]i=1n(MiΔxi)

莫比乌斯反演,得到

Ans=d=1mCc2d1Δx1=1m1dΔx2=1m2d...Δxn=1mndt|gcd(x1,...xn)μ(t)i=1n(MiΔxid)

Ans=d=1mCc2d1t=1m/dμ(t)Δx1=1m1dtΔx2=1m2dt...Δxn=1mndti=1n(MiΔxidt)

令h=dt,
Ans=h=1mΔx1=1m1hΔx2=1m2h...Δxn=1mnhi=1n(MiΔxih)d|hCc2d1μ(h/d)

Ans=h=1mi=1nx=1mih(Mixh)d|hCc2d1μ(h/d)

我们令 G[h]=d|hCc2d1μ(h/d)
显然我们是可以 O(mlogm) 的预处理出G数组的。
f(m,h)=x=1mh(Mixh)
f(m,h)=mhMih(1+mh)mh/2 可以O(1)算。

所以
Ans=h=1mi=1nf(mi,h)G[h]
复杂度 O(nm)

我们考虑进一步优化,由于n元组{ m1/h...mn/h }的取值最多 nm 种,而确定了他们的取值后f函数就是一个形如px+q的多项式,假设在l…r上这n个多项式是相同的,我们可以 O(n2) 的算出这n个多项式的乘积,记作P(h),则
Ansl...r=h=lrP(h)G[h]
我们记 P(h)=k=0nakhk
Ansl...r=k=0nakh=lrG[h]hk
我们可以预处理出 G[h]hk 的前缀和。

所以总的复杂度就是 O(nmc+cmlogm+Tn3m)

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 100010
#define mod 10007
inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int tst,n,m[13],G[N],mu[N],C[N][20],sum[22][13][N];
bool notprime[N];int a[13],prime[N],tot=0;
inline void getmu(){
    notprime[1]=1;mu[1]=1;
    for(int i=2;i<=100000;++i){
        if(!notprime[i]){
            prime[++tot]=i;mu[i]=-1;
        }for(int j=1;prime[j]*i<=100000;++j){
            notprime[prime[j]*i]=1;
            if(i%prime[j]==0){
                mu[prime[j]*i]=0;break;
            }mu[prime[j]*i]=-mu[i];
        }
    }for(int i=0;i<=100000;++i) C[i][0]=1;C[1][1]=1;
    for(int i=2;i<=100000;++i)
        for(int j=1;j<=18;++j) C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
    for(int c=2;c<=20;++c){
        memset(G,0,sizeof(G));
        for(int i=1;i<=100000;++i)
            for(int j=i;j<=100000;j+=i)
                G[j]=(G[j]+C[i-1][c-2]*mu[j/i])%mod;
        for(int i=1;i<=100000;++i){
            int tmp=1,base=i%mod;
            for(int k=0;k<=11;++k){
                sum[c][k][i]=(sum[c][k][i-1]+G[i]*tmp)%mod;
                tmp=tmp*base%mod;
            }
        }
    }
}
inline void calc(int h){//计算n个多项式(px+q)的乘积
    memset(a,0,sizeof(a));a[0]=1;
    for(int i=1;i<=n;++i){
        int t=m[i]/h;
        int p=(-(ll)(t+1)*t/2)%mod;
        int q=(ll)t*(m[i]+1)%mod;
        for(int j=n;j>=1;--j)
            a[j]=(a[j-1]*p+a[j]*q)%mod;
        a[0]=(ll)a[0]*q%mod;
    }
}
int main(){
//  freopen("space1.in","r",stdin);
//  freopen("space1.out","w",stdout);
    tst=read();getmu();
    while(tst--){
        n=read();int c=read();int mn=inf,last,ans=0;
        for(int i=1;i<=n;++i) m[i]=read()-1,mn=min(mn,m[i]);
        for(int i=1;i<=mn;i=last+1){
            last=inf;for(int j=1;j<=n;++j) last=min(last,m[j]/(m[j]/i));
            calc(i);for(int j=0;j<=n;++j)
            ans=(ans+(ll)a[j]*(sum[c][j][last]-sum[c][j][i-1]))%mod;
        }if(ans<0) ans+=mod;printf("%d\n",ans);
    }return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值