bzoj5196 [Usaco2018 Feb]Taming the Herd(dp)

设dp[i][k][j]表示前i个位置有k个0,最后一个位置的数是j的最小代价。再处理出一个ans[i][k]表示前i个位置有k个0的最小代价转移,方便转移。复杂度 O(n3)

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 110
inline char gc(){
    static char buf[1<<16],*S,*T;
    if(S==T){T=(S=buf)+fread(buf,1,1<<16,stdin);if(T==S) return EOF;}
    return *S++;
}
inline int read(){
    int x=0,f=1;char ch=gc();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=gc();
    return x*f;
}
int n,a[N],dp[N][N][N];//dp[i][k][j],前i个位置有k个0,最后一个位置的数是j的最小代价
int ans[N][N];//ans[i][k],前i个位置有k个0的最小代价
int main(){
//  freopen("taming.in","r",stdin);
//  freopen("taming.out","w",stdout);
    n=read();for(int i=1;i<=n;++i) a[i]=read();
    memset(dp,inf,sizeof(dp));dp[1][1][0]=(a[1]!=0);
    memset(ans,inf,sizeof(ans));ans[1][1]=dp[1][1][0];
    for(int i=2;i<=n;++i)
        for(int k=1;k<=i;++k){
            dp[i][k][0]=min(dp[i][k][0],ans[i-1][k-1]+(a[i]!=0));
            for(int j=1;j<i;++j)
                dp[i][k][j]=min(dp[i][k][j],dp[i-1][k][j-1]+(a[i]!=j));
            for(int j=0;j<i;++j) ans[i][k]=min(ans[i][k],dp[i][k][j]);
        }
    for(int i=1;i<=n;++i) printf("%d\n",ans[n][i]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值