设dp[i][k][j]表示前i个位置有k个0,最后一个位置的数是j的最小代价。再处理出一个ans[i][k]表示前i个位置有k个0的最小代价转移,方便转移。复杂度 O(n3)
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 110
inline char gc(){
static char buf[1<<16],*S,*T;
if(S==T){T=(S=buf)+fread(buf,1,1<<16,stdin);if(T==S) return EOF;}
return *S++;
}
inline int read(){
int x=0,f=1;char ch=gc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=gc();
return x*f;
}
int n,a[N],dp[N][N][N];//dp[i][k][j],前i个位置有k个0,最后一个位置的数是j的最小代价
int ans[N][N];//ans[i][k],前i个位置有k个0的最小代价
int main(){
// freopen("taming.in","r",stdin);
// freopen("taming.out","w",stdout);
n=read();for(int i=1;i<=n;++i) a[i]=read();
memset(dp,inf,sizeof(dp));dp[1][1][0]=(a[1]!=0);
memset(ans,inf,sizeof(ans));ans[1][1]=dp[1][1][0];
for(int i=2;i<=n;++i)
for(int k=1;k<=i;++k){
dp[i][k][0]=min(dp[i][k][0],ans[i-1][k-1]+(a[i]!=0));
for(int j=1;j<i;++j)
dp[i][k][j]=min(dp[i][k][j],dp[i-1][k][j-1]+(a[i]!=j));
for(int j=0;j<i;++j) ans[i][k]=min(ans[i][k],dp[i][k][j]);
}
for(int i=1;i<=n;++i) printf("%d\n",ans[n][i]);
return 0;
}