bzoj4553 [Tjoi2016&Heoi2016]序列(dp+树状数组套splay)

处理出每个位置i的最大值c[i],最小值b[i],原来是a[i]。考虑倒着dp,那么i如果能接在j(j>i)之前,则需要满足:
a[i]<=b[j]&&c[i]<=a[j]。我们就是要求满足这两个限制的点中最大的一个。可以直接树套树解决。
复杂度 O(nlog2n) O ( n l o g 2 n )

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 100010
#define M 2000010
inline char gc(){
    static char buf[1<<16],*S,*T;
    if(S==T){T=(S=buf)+fread(buf,1,1<<16,stdin);if(T==S) return EOF;}
    return *S++;
}
inline int read(){
    int x=0,f=1;char ch=gc();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=gc();
    return x*f;
}
int n,m,a[N],b[N],cc[N],ans[N];//bi--mn,ci--mx
int ed[N],rt[N],owo=0,fa[M],c[M][2],id[M],mx[M];
inline void update(int p){
    int l=c[p][0],r=c[p][1];
    mx[p]=max(max(mx[l],mx[r]),ans[id[p]]);
}
inline void rotate(int x,int &k){
    int y=fa[x],z=fa[y],l=x==c[y][1],r=l^1;
    if(y==k) k=x;
    else c[z][y==c[z][1]]=x;
    fa[c[x][r]]=y;fa[y]=x;fa[x]=z;
    c[y][l]=c[x][r];c[x][r]=y;update(y);update(x);
}
inline void splay(int x,int &k){
    while(x!=k){
        int y=fa[x],z=fa[y];
        if(y!=k){
            if(x==c[y][1]^y==c[z][1]) rotate(x,k);
            else rotate(y,k);
        }rotate(x,k);
    }
}
inline void ins(int &p,int Fa,int x,int &root){
    if(!p){p=++owo;fa[p]=Fa;id[p]=x;update(p);splay(p,root);return;}
    if(a[x]<=a[id[p]]) ins(c[p][0],p,x,root);
    else ins(c[p][1],p,x,root);
}
inline int getpre(int p,int x){
    int res=0;
    while(p){
        if(a[id[p]]<x) res=p,p=c[p][1];
        else p=c[p][0];
    }return res;
}
inline int qmx(int id,int val){//>=val的点中的最大值
    int pre=getpre(rt[id],val);
    splay(pre,rt[id]);splay(ed[id],c[pre][1]);
    int x=c[ed[id]][0];return mx[x];
}
inline int ask(int x,int i){
    int res=0;for(;x;x-=x&-x) res=max(res,qmx(x,cc[i]));return res;
}
inline void add(int x,int val){
    for(;x<=m;x+=x&-x) ins(rt[x],0,val,rt[x]);
}
int main(){
    freopen("seq.in","r",stdin);
    freopen("seq.out","w",stdout);
    n=read();m=read();int nn=0;a[0]=0;a[n+1]=inf;
    for(int i=1;i<=n;++i) a[i]=b[i]=cc[i]=read(),nn=max(nn,a[i]);
    while(m--){
        int x=read(),val=read();
        b[x]=min(b[x],val);cc[x]=max(cc[x],val);
    }m=nn;for(int i=1;i<=m;++i) ins(rt[i],0,0,rt[i]),ins(rt[i],0,n+1,rt[i]),ed[i]=owo;
    for(int i=n;i>=1;--i){
        ans[i]=ask(m-a[i]+1,i)+1;add(m-b[i]+1,i);
    }for(int i=1;i<=n;++i) ans[0]=max(ans[0],ans[i]);
    printf("%d\n",ans[0]);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值