分析:
发现这道题有点别扭哎
每次每刻只有一个数字发生变化(下一时刻变化取消)
每个位置都有一个变化范围
求一个子序列,使得在任意一种变化中,这个子序列都是不降的
换句话说,对于这个子序列中的一个位置,不管这个数怎么变化,ta的前驱都会小于等于ta,后继都会大于等于ta
记录每个点的变化范围
(min[i],max[i])
(
m
i
n
[
i
]
,
m
a
x
[
i
]
)
一定要注意这条性质:每次每刻只有一个数字发生变化
那么
y
y
可以作为的后继当且仅当:
a[y]>=max[x]
a
[
y
]
>=
m
a
x
[
x
]
min[y]>=a[x]
m
i
n
[
y
]
>=
a
[
x
]
y>=x
y
>=
x
那么dp的转移就有一种三维偏序的感觉
CDQ分治解决
把
x,y
x
,
y
看做是两个点:
(a[x],max[x]),(min[y],a[y])
(
a
[
x
]
,
m
a
x
[
x
]
)
,
(
m
i
n
[
y
]
,
a
[
y
]
)
按照
x
x
排序,用树状数组维护即可
tip
以前写CDQ:
CDQ(l,mid);
CDQ(mid+1,r);
solve(l,r);
但是这道题:
CDQ(l,mid);
solve(l,r);
CDQ(mid+1,r);
问了一下舒老师:
为什么狂WA不止呢???
好像是因为变量名写串了,干脆全部换新才A掉
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=100010;
int n,m,f[N],c[N];
struct node{
int mx,mn,id,v;
};
node a[N];
struct po {
int x,y,id;
};
po p[N];
void add(int x,int z) {
for (int i=x;i<=100000;i+=(i&(-i))) c[i]=max(c[i],z);
}
void clear(int x) {
for (int i=x;i<=100000;i+=(i&(-i))) c[i]=0;
}
int ask(int x) {
int ans=0;
for (int i=x;i>0;i-=(i&(-i))) ans=max(ans,c[i]);
return ans;
}
int cmp(const po &a,const po &b) {
return (a.x<b.x)||((a.x==b.x)&&(a.y<b.y))||((a.x==b.x)&&(a.y==b.y)&&(a.id<b.id));
}
void CDQ(int l,int r) {
if (l==r) return;
int mid=(l+r)>>1;
CDQ(l,mid);
int cnt=0;
for (int i=l;i<=r;i++)
if (a[i].id<=mid) { //左区间
p[++cnt].id=a[i].id;
p[cnt].x=a[i].v; p[cnt].y=a[i].mx;
}
else { //右区间
p[++cnt].id=a[i].id;
p[cnt].x=a[i].mn; p[cnt].y=a[i].v;
}
sort(p+1,p+1+cnt,cmp); //按x排序
for (int i=1;i<=cnt;i++)
if (p[i].id<=mid) add(p[i].y,f[p[i].id]);
else f[p[i].id]=max(f[p[i].id],ask(p[i].y)+1);
for (int i=1;i<=cnt;i++)
if (p[i].id<=mid) clear(p[i].y);
CDQ(mid+1,r);
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) f[i]=1;
for (int i=1;i<=n;i++) {
scanf("%d",&a[i].v);
a[i].mn=a[i].mx=a[i].v;
a[i].id=i;
}
for (int i=1;i<=m;i++) {
int x,y;
scanf("%d%d",&x,&y);
a[x].mx=max(a[x].mx,y);
a[x].mn=min(a[x].mn,y);
}
CDQ(1,n);
int ans=0;
for (int i=1;i<=n;i++) ans=max(ans,f[i]);
printf("%d",ans);
return 0;
}