bzoj4553 [Tjoi2016&Heoi2016]序列(CDQ分治+dp)

14 篇文章 0 订阅

题目链接

分析:
发现这道题有点别扭哎
每次每刻只有一个数字发生变化(下一时刻变化取消)

每个位置都有一个变化范围
求一个子序列,使得在任意一种变化中,这个子序列都是不降的
换句话说,对于这个子序列中的一个位置,不管这个数怎么变化,ta的前驱都会小于等于ta,后继都会大于等于ta

记录每个点的变化范围 (min[i],max[i]) ( m i n [ i ] , m a x [ i ] )
一定要注意这条性质:每次每刻只有一个数字发生变化
那么 y y 可以作为x的后继当且仅当:
a[y]>=max[x] a [ y ] >= m a x [ x ]
min[y]>=a[x] m i n [ y ] >= a [ x ]
y>=x y >= x

那么dp的转移就有一种三维偏序的感觉
CDQ分治解决

x,y x , y 看做是两个点: (a[x],max[x]),(min[y],a[y]) ( a [ x ] , m a x [ x ] ) , ( m i n [ y ] , a [ y ] )
按照 x x 排序,用树状数组维护y即可

tip

以前写CDQ:

CDQ(l,mid);
CDQ(mid+1,r);
solve(l,r);

但是这道题:

CDQ(l,mid);
solve(l,r);
CDQ(mid+1,r);

问了一下舒老师:
这里写图片描述

为什么狂WA不止呢???
好像是因为变量名写串了,干脆全部换新才A掉

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>

using namespace std;

const int N=100010;
int n,m,f[N],c[N];
struct node{
    int mx,mn,id,v;
};
node a[N];
struct po {
    int x,y,id;
};
po p[N];

void add(int x,int z) {
    for (int i=x;i<=100000;i+=(i&(-i))) c[i]=max(c[i],z);
}

void clear(int x) {
    for (int i=x;i<=100000;i+=(i&(-i))) c[i]=0;
}

int ask(int x) {
    int ans=0;
    for (int i=x;i>0;i-=(i&(-i))) ans=max(ans,c[i]);
    return ans;
}

int cmp(const po &a,const po &b) {
    return (a.x<b.x)||((a.x==b.x)&&(a.y<b.y))||((a.x==b.x)&&(a.y==b.y)&&(a.id<b.id));
}

void CDQ(int l,int r) {
    if (l==r) return;
    int mid=(l+r)>>1;
    CDQ(l,mid);
    int cnt=0;
    for (int i=l;i<=r;i++) 
        if (a[i].id<=mid) {        //左区间 
            p[++cnt].id=a[i].id;
            p[cnt].x=a[i].v; p[cnt].y=a[i].mx;
        }
        else {                    //右区间 
            p[++cnt].id=a[i].id;
            p[cnt].x=a[i].mn; p[cnt].y=a[i].v;
        } 
    sort(p+1,p+1+cnt,cmp);        //按x排序 
    for (int i=1;i<=cnt;i++) 
        if (p[i].id<=mid) add(p[i].y,f[p[i].id]);
        else f[p[i].id]=max(f[p[i].id],ask(p[i].y)+1);
    for (int i=1;i<=cnt;i++) 
        if (p[i].id<=mid) clear(p[i].y);
    CDQ(mid+1,r);
}

int main() 
{
    scanf("%d%d",&n,&m);
    for (int i=1;i<=n;i++) f[i]=1;
    for (int i=1;i<=n;i++) {
        scanf("%d",&a[i].v);
        a[i].mn=a[i].mx=a[i].v;
        a[i].id=i;
    }
    for (int i=1;i<=m;i++) {
        int x,y;
        scanf("%d%d",&x,&y);
        a[x].mx=max(a[x].mx,y);
        a[x].mn=min(a[x].mn,y);
    }
    CDQ(1,n);
    int ans=0;
    for (int i=1;i<=n;i++) ans=max(ans,f[i]);
    printf("%d",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值