bzoj3113/hdu2481 Toy(矩阵树定理+polya+矩阵快速幂)

这神题,真是给跪了orz
首先你需要做过bzoj1002,我们得到了一个递推式 f[n]=3f[n1]f[n2]+2 ,用来算n个点的方案数。
然后这题旋转同构,你需要polya,因为n很大,所以要欧拉函数优化,所以答案就是 i|nϕ(i)f[n/i] 。你需要 O(n 枚举因子d, O(d) 算欧拉函数,用矩阵快速幂 O(33logd) 算f。

然而最后还要除以n,n,m居然不保证互质,不一定存在逆元!怎么办呢qaq
我们有 ab mod p=a mod bpb ,当 b|a 时成立。
因此我们就一直%nm就好了,最后可以直接除以n。
问题又来了,这样乘法就会爆ll了!那我们可以写快速乘。又带上了一个log qaq
这样就可以通过hdu啦!
但是bzoj只给了1s…
怎么办呢,我们还有神奇的O(1)快速乘!orz orz Orz

然后这题就完了呢!owo

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define ll long long
#define ld long double
#define inf 0x3f3f3f3f
#define N 100010
inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int n,prime[N],tot=0,phi[N];ll mod,ans;
bool notprime[N];
/*inline ll mul(ll a,ll b){
    ll res=0,f=1;if(a<0) a=-a,f=-1;
    for(;a;a>>=1,b=(b+b)%mod) if(a&1) (res+=b)%=mod;return res*f;
}*/
inline ll mul(ll a,ll b){
    ll tmp=a*b-(ll)((ld)a/mod*b+1e-8)*mod;return tmp<0?tmp+mod:tmp;
}
struct Matrix{
    ll a[3][3];
    Matrix(bool t){memset(a,0,sizeof(a));if(t) for(int i=0;i<3;++i) a[i][i]=1;}
    friend Matrix operator*(Matrix a,Matrix b){
        Matrix res(0);
        for(int i=0;i<3;++i)
            for(int j=0;j<3;++j)
                for(int k=0;k<3;++k)
                    (res.a[i][j]+=mul(a.a[i][k],b.a[k][j]))%=mod;return res;
    }friend Matrix operator^(Matrix a,int k){
        Matrix res(1);for(;k;k>>=1,a=a*a) if(k&1) res=res*a;return res;
    }
}a(0),trans(0);
inline void getprime(){
    notprime[1]=1;phi[1]=1;
    for(int i=2;i<=100000;++i){
        if(!notprime[i]) prime[++tot]=i,phi[i]=i-1;
        for(int j=1;prime[j]*i<=100000;++j){
            notprime[prime[j]*i]=1;
            if(i%prime[j]==0){phi[i*prime[j]]=phi[i]*prime[j];break;}
            phi[i*prime[j]]=phi[i]*phi[prime[j]];
        }
    }
}
inline int ph(int x){
    if(x<=100000) return phi[x]%mod;
    int res=x,xx=x;
    for(int j=1;prime[j]*prime[j]<=x&&xx!=1;++j){
        if(xx%prime[j]) continue;
        res-=res/prime[j];while(xx%prime[j]==0) xx/=prime[j];
    }if(xx!=1) res-=res/xx;return res%mod;
}
inline ll calc(int x){
    if(x==1) return 1;if(x==2) return 5;
    Matrix res=a*(trans^(x-2));return res.a[0][0];
}
int main(){
//  freopen("a.in","r",stdin);
    getprime();a.a[0][0]=5;a.a[0][1]=1;a.a[0][2]=2;trans.a[0][0]=3;trans.a[1][0]=-1;
    trans.a[2][0]=1;trans.a[0][1]=1;trans.a[2][2]=1;
    while(~scanf("%d",&n)){
        mod=read();mod*=n;ans=0;int x;
        for(x=1;x*x<n;++x)
            if(n%x==0) (ans+=mul(ph(n/x),calc(x))+mul(ph(x),calc(n/x)))%=mod;
        if(x*x==n) (ans+=mul(ph(x),calc(x)))%=mod;mod/=n;
        printf("%lld\n",(ans/n+mod)%mod);
    }return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值