bzoj1068 [SCOI2007]压缩(区间dp)

真的是神orz
f[l][r][0/1]表示压缩l~r,中间有没有M的最小长度。我们默认l前面有一个M(因为题目说一开始最左端有个M,方便讨论)
然后f[l][r][0]=min(f[l][k][0]+r-k)
f[l][r][1]=min(f[l][r][1],min(f[l][k][0],f[l][k][1])+1+min(f[k+1][r][0],f[k+1[r][1]))。
如果l~r可以折半的话,f[l][r][0]=f[l][mid][0]+1

复杂度O(n3)

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 60
inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int n,f[N][N][2];
char s[N];
inline bool jud(int x,int len){
    int y=x+len;
    for(int i=0;i<len;++i) if(s[x+i]!=s[y+i]) return 0;
    return 1;
}
int main(){
//  freopen("a.in","r",stdin);
    scanf("%s",s+1);n=strlen(s+1);
    for(int l=1;l<=n;++l)
        for(int i=1;i<=n;++i){
            int j=i+l-1;if(j>n) break;
            f[i][j][0]=f[i][j][1]=j-i+1;
            for(int k=i;k<j;++k) f[i][j][0]=min(f[i][j][0],f[i][k][0]+j-k);
            if(l%2==0&&jud(i,l>>1)) f[i][j][0]=min(f[i][j][0],f[i][i+j>>1][0]+1);
            for(int k=i;k<j;++k) f[i][j][1]=min(f[i][j][1],min(f[i][k][0],f[i][k][1])+1+min(f[k+1][j][0],f[k+1][j][1]));
        }printf("%d\n",min(f[1][n][0],f[1][n][1]));
    return 0;
}
发布了1239 篇原创文章 · 获赞 35 · 访问量 27万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览