翡蜀定理是啥呢,就是说:
若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。
也就是说:
对于任意整数a和b不都为0,则gcd(a,b)是a与b的线性组合集 {ax+by:x,y∈Z} 中的最小正元素。
可以推广到n个整数。
n个整数的线性组合集的最小正元素就是他们的gcd。
那么对于本题,也就是要求在n个数中选择k个 使最大公因数最大
找出n个数的所有因数 排序 找出最大的且出现次数大于等于k的输出即可
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 1600000
inline char gc(){
static char buf[1<<16],*S,*T;
if(S==T){T=(S=buf)+fread(buf,1,1<<16,stdin);if(T==S) return EOF;}
return *S++;
}
inline int read(){
int x=0,f=1;char ch=gc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=gc();
return x*f;
}
int n,K,a[N],tot=0;
inline void decomp(int x){
int i;
for(i=1;i*i<x;++i)
if(x%i==0) a[++tot]=i,a[++tot]=x/i;
if(i*i==x) a[++tot]=i;
}
int main(){
// freopen("a.in","r",stdin);
n=read();K=read();
while(n--) decomp(read());
sort(a+1,a+tot+1);int cnt=0;
for(int i=tot;i>=1;--i){
if(a[i]!=a[i+1]) cnt=0;
++cnt;if(cnt>=K){printf("%d\n",a[i]);return 0;}
}
}