裴蜀定理

定理:

若a,b是整数,且(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。

它的一个重要推论是:a,b互质的充要条件是存在整数x,y使ax+by=1.

设a1,a2,a3......an为n个整数,d是它们的最大公约数,那么存在整数x1......xn使得x1*a1+x2*a2+...xn*an=d。

特别来说,如果a1...an互质(不是两两互质),那么存在整数x1......xn使得x1*a1+x2*a2+...xn*an=1。

 

题面

你需要设计一套纸币系统, 现在已经有了 n 种不同样式的纸币,你只需要为它们设计面值。 每种纸币的面值都是 B 的约数(不同种纸币面值可以相同) , 但是 B 还未知, 只知道 L<=B<=R,在这个国家,支付时会给定 d, 只要支付的总额模 K 与 d 同余即可。 为了让人们能应对支付时给出不同 d 的所有情况(假设可以使用的纸币没有限制),请问你在 B 取值的所有可能性下设计方案数的和。答案对 998244353 取模。

 

分析


代码

#include<iostream>
using namespace std;
const int N=10001000;
const long long MOD=998244353;
int L,R,pr[N],a[N];
long long K,m,mi[200],f[N];
long long pow(long long a,long long b){
    long long re=1;
    while(b){
        if(b&1) re=re*a%MOD;
        a=a*a%MOD,b>>=1;
    }
    return re;
}
int main(){
   cin>>L>R>>K>>m;
    for(int i=0;i<=100;i++) mi[i]=pow(i,m);
    for(int i=2;i<=10000000;i++){
        if(!a[i])
            pr[++pr[0]]=i,a[i]=1;
        for(int j=1;j<=pr[0]&&1LL*i*pr[j]<=10000000;j++)
            if(i%pr[j]==0){
                a[i*pr[j]]=a[i];
                break;
            }
			else a[i*pr[j]]=i;
    }
    for(int i=1;i<=pr[0];i++)
        if(K%pr[i]==0)
            for(long long j=1,t=pr[i];t<=10000000;j++,t*=pr[i])
                f[t]=(mi[j+1]-mi[j]+MOD)%MO
		else
            for(long long j=1,t=pr[i];t<=10000000;j++,t*=pr[i])
                f[t]=mi[j+1];
        }
    f[1]=1;
    for(int i=2;i<=10000000;i++)
        if(a[i]>1)
            f[i]=f[a[i]]*f[i/a[i]]%MOD;
    for(int i=2;i<=10000000;i++)
        f[i]=(f[i-1]+f[i])%MOD;
    cout<<(f[R]-f[L-1]+MOD)%MOD;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值