定理:
若a,b是整数,且(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。
它的一个重要推论是:a,b互质的充要条件是存在整数x,y使ax+by=1.
设a1,a2,a3......an为n个整数,d是它们的最大公约数,那么存在整数x1......xn使得x1*a1+x2*a2+...xn*an=d。
特别来说,如果a1...an互质(不是两两互质),那么存在整数x1......xn使得x1*a1+x2*a2+...xn*an=1。
题面
你需要设计一套纸币系统, 现在已经有了 n 种不同样式的纸币,你只需要为它们设计面值。 每种纸币的面值都是 B 的约数(不同种纸币面值可以相同) , 但是 B 还未知, 只知道 L<=B<=R,在这个国家,支付时会给定 d, 只要支付的总额模 K 与 d 同余即可。 为了让人们能应对支付时给出不同 d 的所有情况(假设可以使用的纸币没有限制),请问你在 B 取值的所有可能性下设计方案数的和。答案对 998244353 取模。
分析
代码
#include<iostream>
using namespace std;
const int N=10001000;
const long long MOD=998244353;
int L,R,pr[N],a[N];
long long K,m,mi[200],f[N];
long long pow(long long a,long long b){
long long re=1;
while(b){
if(b&1) re=re*a%MOD;
a=a*a%MOD,b>>=1;
}
return re;
}
int main(){
cin>>L>R>>K>>m;
for(int i=0;i<=100;i++) mi[i]=pow(i,m);
for(int i=2;i<=10000000;i++){
if(!a[i])
pr[++pr[0]]=i,a[i]=1;
for(int j=1;j<=pr[0]&&1LL*i*pr[j]<=10000000;j++)
if(i%pr[j]==0){
a[i*pr[j]]=a[i];
break;
}
else a[i*pr[j]]=i;
}
for(int i=1;i<=pr[0];i++)
if(K%pr[i]==0)
for(long long j=1,t=pr[i];t<=10000000;j++,t*=pr[i])
f[t]=(mi[j+1]-mi[j]+MOD)%MO
else
for(long long j=1,t=pr[i];t<=10000000;j++,t*=pr[i])
f[t]=mi[j+1];
}
f[1]=1;
for(int i=2;i<=10000000;i++)
if(a[i]>1)
f[i]=f[a[i]]*f[i/a[i]]%MOD;
for(int i=2;i<=10000000;i++)
f[i]=(f[i-1]+f[i])%MOD;
cout<<(f[R]-f[L-1]+MOD)%MOD;
return 0;
}