bzoj4411 [Usaco2016 Feb]Load balancing(线段树+二分+贪心)

首先我们枚举横着一刀切在哪,然后考虑此时竖着一刀切在哪里最好。我们令横线上方的点记为0,下方的点记为1,竖线左边的点记为l,右边的点记为r,则随着竖线的右移,显然有 max(l0,l1) m a x ( l 0 , l 1 ) 逐渐变大, max(r0,r1) m a x ( r 0 , r 1 ) 逐渐变小。
ans=max(max(l0,l1),max(r0,r1)) a n s = m a x ( m a x ( l 0 , l 1 ) , m a x ( r 0 , r 1 ) ) ,则我们一定有ans先减小后增大,是个单峰函数,我们可以在线段树上二分一下找到这个峰值点,更新答案。

复杂度 Onlogn O ( n l o g n )

upd:这个单峰函数的最值可能在两端,需要取min。但是大概因为枚举了横线,就算此次求出的竖线不是当前横线最优的,那最优的也一定会在枚举某个横线时出现。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 100010
inline char gc(){
    static char buf[1<<16],*S,*T;
    if(S==T){T=(S=buf)+fread(buf,1,1<<16,stdin);if(T==S) return  EOF;}
    return *S++;
}
inline int read(){
    int x=0,f=1;char ch=gc();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=gc();
    return x*f;
}
int n,num[N*10],ans=inf,X0,X1;
struct node{
    int x0,x1;
}tr[N*10*4];
struct P{
    int x,y;
    friend bool operator<(P a,P b){return a.y<b.y;}
}a[N];
inline void pushup(int p){
    tr[p].x0=tr[p<<1].x0+tr[p<<1|1].x0;
    tr[p].x1=tr[p<<1].x1+tr[p<<1|1].x1;
}
inline void build(int p,int l,int r){
    if(l==r){tr[p].x0=num[l];tr[p].x1=0;return;}
    int mid=l+r>>1;build(p<<1,l,mid);build(p<<1|1,mid+1,r);pushup(p);
}
inline void change(int p,int l,int r,int x){
    if(l==r){tr[p].x0--;tr[p].x1++;return;}
    int mid=l+r>>1;
    if(x<=mid) change(p<<1,l,mid,x);
    else change(p<<1|1,mid+1,r,x);pushup(p);
}
inline int ask(int p,int l,int r,int x0,int x1){//找峰值 
    if(l==r) return l;
    int mid=l+r>>1;int sum0=x0+tr[p<<1].x0,sum1=x1+tr[p<<1].x1;
    if(max(sum0,sum1)>=max(tr[1].x0-sum0,tr[1].x1-sum1))
        return ask(p<<1,l,mid,x0,x1);
    return ask(p<<1|1,mid+1,r,sum0,sum1);
}
inline void qsum(int p,int l,int r,int x,int y){
    if(x>y) return;
    if(x<=l&&r<=y){X0+=tr[p].x0;X1+=tr[p].x1;return;}
    int mid=l+r>>1;
    if(x<=mid) qsum(p<<1,l,mid,x,y);
    if(y>mid) qsum(p<<1|1,mid+1,r,x,y);
}
int main(){
//  freopen("a.in","r",stdin);
    n=read();
    for(int i=1;i<=n;++i) a[i].x=read(),a[i].y=read(),num[a[i].x]++;
    sort(a+1,a+n+1);build(1,1,1e6);
    for(int i=1,j;i<=n;i=j){//枚举横向切在a[i].y上面 
        j=i;
        while(j<=n&&a[j].y==a[i].y) change(1,1,1e6,a[j].x),++j;
        int pos=ask(1,1,1e6,0,0);
        X0=0;X1=0;qsum(1,1,1e6,1,pos);
        ans=min(ans,max(X0,X1));
        X0=0;X1=0;qsum(1,1,1e6,1,pos-1);
        ans=min(ans,max(tr[1].x0-X0,tr[1].x1-X1));
    }printf("%d\n",ans);
    return 0;
}
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值