bzoj1065 [NOI2008]奥运物流(树形dp+背包转移)

太神了orz
跪烂orz
具体做法见论文:portal
可以推导出 R1=i=1nCikdi1klen
大概就是先枚举环的长度len,每一个点如果要改父亲,则一定是直接接在1上最优,然后对于每棵树,树形dp,因为选了一个点还会对他的祖先有影响,所以还要再加一维表示对未来的转移,即i的深度,然后背包转移。然后对1的儿子再背包转移一遍即可。复杂度 O(lenn2m2)

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 70
inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int n,m,fa[N];//f[i][j][k],以i为根的子树改j次,i的深度为k的最大值
double p1,bin[N],C[N],f[N][N][N],tmp[N],g[N][N][N],ans=0;
vector<int>son[N];
inline void dp(int x,int d){
    for(int i=0;i<son[x].size();++i) dp(son[x][i],d+1);
    for(int k=min(2,d);k<=d;++k){//不改x
        memset(tmp,0,sizeof(tmp));
        for(int ii=0;ii<son[x].size();++ii){
            int y=son[x][ii];
            for(int i=m;i>=0;--i)
                for(int j=i;j>=0;--j)
                    tmp[i]=max(tmp[i],tmp[j]+g[y][i-j][k]);
        }for(int i=m;i>=0;--i) f[x][i][k]=tmp[i]+C[x]*bin[k];
    }if(d!=1){//改x
        memset(tmp,0,sizeof(tmp));
        for(int ii=0;ii<son[x].size();++ii){
            int y=son[x][ii];
            for(int i=m;i>=0;--i)
                for(int j=i;j>=0;--j)
                    tmp[i]=max(tmp[i],tmp[j]+g[y][i-j][1]);
        }for(int i=m;i>=1;--i) f[x][i][1]=tmp[i-1]+C[x]*bin[1];
    }for(int i=0;i<=m;++i)
        for(int j=0;j<d;++j) g[x][i][j]=max(f[x][i][j+1],f[x][i][1]);
}
int main(){
//  freopen("a.in","r",stdin);
    n=read();m=read();scanf("%lf",&p1);bin[0]=1;
    for(int i=1;i<=n;++i) bin[i]=bin[i-1]*p1;
    for(int i=1;i<=n;++i) fa[i]=read();
    for(int i=1;i<=n;++i) scanf("%lf",&C[i]);
    for(int x=fa[1],len=2;x!=1;x=fa[x],++len){
        for(int i=1;i<=n;++i) son[i].clear();memset(f,0,sizeof(f));memset(g,0,sizeof(g));
        for(int i=2;i<=n;++i) if(i!=x) son[fa[i]].push_back(i);else son[1].push_back(x);
        for(int i=0;i<son[1].size();++i) dp(son[1][i],1);
        memset(tmp,0,sizeof(tmp));
        for(int ii=0;ii<son[1].size();++ii){
            int y=son[1][ii];
            for(int j=m;j>=0;--j)
                for(int i=j;i>=0;--i)
                    tmp[j]=max(tmp[j],tmp[i]+f[y][j-i][1]);
        }double res=0;
        for(int i=0;i<m;++i) res=max(res,tmp[i]);
        if(fa[x]==1) res=max(res,tmp[m]);res+=C[1];
        ans=max(ans,res/(1-bin[len]));
    }printf("%.2lf\n",ans);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值