题意
将一棵n个节点的有根树,删掉一些边变成恰有p个节点的新树。求最少需要去掉几条边。
分析
一开始理解成了搜索题,因为状态多没去想树形DP。
但是后面讲到多叉树的处理一般转化为背包问题,用递归先求儿子状态,再逐个放入父节点的“背包”,也就是一个多重背包问题。
设 f [ i ] [ j ] f[i][j] f[i][j] 为以 i i i 为根的子树保留了 j j j 个节点的最少删边数,其中 i i i 点必选。
因为儿子是一个个加进来的(类比背包中一个个物品加进来),所以一开始当前的节点可以看做“孤点”,也就是初始化 f [ x ] [ 1 ] = 0 f[x][1]=0 f[x][1]=0.
转移:第一层枚举 j : p − > 1 j:p->1 j:p−>1,第二层枚举 k : 1 − > j − 1 k:1->j-1 k:1−