NEFU 9.23

A.Valid BFS?

题意

给出一棵树和一个序列,求这个序列是不是从1号进行的BFS序

思路

由于n过大,用map存储两点是否存在边。直接模拟队列,并且实时记录队头结点被记录的次数,若达到该点连接的边数,就将此点移出队列。

代码

/*
 * @Author: Icey_dying
 * @Date: 2021-09-23 20:03:43
 * @LastEditors: Icey_dying
 * @LastEditTime: 2021-09-27 15:46:08
 * @FilePath: \Icey_dying\competition\2021\2021.09\2021.9.23\A.cpp
 */
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 5;
int n, a[N], cnt[N], cnt1[N];
map<int, map<int, int>> m;

int main()
{
    cin >> n;
    memset(cnt, 0, sizeof(cnt));
    memset(cnt1, 0, sizeof(cnt1));
    for (int i = 1, x, y; i < n; i++) {
        cin >> x >> y;
        m[x][y] = m[y][x] = 1;
        cnt[x]++;
        cnt[y]++;
    }
    for (int i = 1; i <= n; i++)
        cin >> a[i];
    // memset(vis, 0, sizeof(vis));
    queue<int> q;
    q.push(1);
    if (a[1] != 1) {
        printf("No\n");
        return 0;
    }
    for (int i = 2; i <= n; i++) {
        q.push(a[i]);
        int t = q.front();
        while (cnt1[t] == cnt[t]) {
            q.pop();
            t = q.front();
        }
        if (m[t][a[i]])
            cnt1[t]++, cnt1[a[i]]++;
        else {
            printf("No\n");
            // printf("%d\n", i);
            return 0;
        }
    }
    printf("Yes\n");
    return 0;
}

B.Connected Component on a Chessboard

题意

现有一个国际象棋棋盘,已知(1,1)是白色。现在让你找一个连通块满足该连通块中有b个黑块和w个白块。

思路

一字长蛇显然是最优的,若b<w,则只要 w ≤ 3 × b + 1 w\le 3\times b+1 w3×b+1就可以构造出来;反之亦然

代码

/*
 * @Author: Icey_dying
 * @Date: 2021-09-23 21:17:15
 * @LastEditors: Icey_dying
 * @LastEditTime: 2021-09-24 13:33:45
 * @FilePath: \Icey_dying\competition\2021\2021.09\2021.9.23\B.cpp
 */
#include <bits/stdc++.h>
using namespace std;
int n;
int main()
{
    cin >> n;
    for (int i = 1, x, y; i <= n; i++) {
        cin >> x >> y;
        int f = 1, cnt = 0, j;
        if (x > y)
            swap(x, y), f = 0;
        if (y > 3 * x + 1) {
            printf("NO\n");
            continue;
        }
        printf("YES\n");
        for (j = 2; cnt < x; j += 2)
            printf("2 %d\n", j + f), cnt++;
        j -= 2;
        cnt = 0;
        for (int k = 3; k < j && cnt < y; k += 2)
            printf("2 %d\n", k + f), cnt++;
        for (int k = 2; k <= j && cnt < y; k += 2)
            printf("1 %d\n", k + f), cnt++;
        for (int k = 2; k <= j && cnt < y; k += 2)
            printf("3 %d\n", k + f), cnt++;
        if (cnt < y)
            printf("2 %d\n", 1 + f), cnt++;
        if (cnt < y)
            printf("2 %d\n", j + 1 + f);
    }
    return 0;
}

C.White Lines

题意

现在有 n × n n\times n n×n和块,每个块可以是黑色或白色。现在有一个板擦,可以将 k × k k\times k k×k个块变白。求板擦擦完后,最多有几行几列全部都是白色。

思路

显然染白后不会影响原先的答案,于是我们可以先预处理原先的白线数
对于每个染白的方案,我们先预处理,然后可以O(1)计算 出他的贡献
可以先计算出前缀和
a [ i ] [ j ] a[i][j] a[i][j]表示第j列行上的前缀和
b [ i ] [ j ] b[i][j] b[i][j]表示第i行列上的前缀和
x [ i ] [ j ] x[i][j] x[i][j]表示去除 [ i − k + 1   i ] [ j ] [i-k+1~i][j] [ik+1 i][j]后对答案的贡献
y [ i ] [ j ] y[i][j] y[i][j]表示去除 [ i ] [ j − k + 1   j ] [i][j-k+1~j] [i][jk+1 j]后对答案的贡献
只有在以下条件同时成立的时候,在i,j处才会对 x [ i ] [ j ] x[i][j] x[i][j]有贡献:
a [ i − k ] [ j ] = = 0 a[i-k][j]==0 a[ik][j]==0
a [ n ] [ j ] − a [ i ] [ j ] = = 0 a[n][j]-a[i][j]==0 a[n][j]a[i][j]==0
a [ i ] [ j ] − a [ i − k ] [ j ] > 0 a[i][j]-a[i-k][j]>0 a[i][j]a[ik][j]>0
即1~i-k+1,i~n必须全都是0
第三个条件是避免重复计算(因为如果原来就是空的那么已经算在答案中了)

代码

/*
 * @Author: Icey_dying
 * @Date: 2021-09-24 13:43:38
 * @LastEditors: Icey_dying
 * @LastEditTime: 2021-09-27 12:33:54
 * @FilePath: \Icey_dying\competition\2021\2021.09\2021.9.23\C.cpp
 */
#include <bits/stdc++.h>
using namespace std;
const int N = 2e3 + 5;
int n, k;
int a[N][N], b[N][N], x[N][N], y[N][N], ans = 0, tot = 0;
int main()
{
    char c;
    cin >> n >> k;
    memset(a, 0, sizeof(a));
    memset(b, 0, sizeof(b));
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= n; j++) {
            cin >> c;
            while (c != 'B' && c != 'W')
                cin >> c;
            a[i][j] = a[i - 1][j] + (c == 'B');
            b[i][j] = b[i][j - 1] + (c == 'B');
        }
    }
    for (int i = 1; i <= n; i++) {
        tot += a[n][i] == 0;
        tot += b[i][n] == 0;
    }
    for (int i = k; i <= n; i++) {
        for (int j = 1; j <= n; j++)
            x[i][j] = x[i][j - 1] + (a[i - k][j] == 0 && a[n][j] - a[i][j] == 0 && a[i][j] - a[i - k][j] > 0);
    }
    for (int j = k; j <= n; j++) {
        for (int i = 1; i <= n; i++)
            y[i][j] = y[i - 1][j] + (b[i][j - k] == 0 && b[i][n] - b[i][j] == 0 && b[i][j] - b[i][j - k] > 0);
    }
    for (int i = k; i <= n; i++)
        for (int j = k; j <= n; j++)
            ans = max(ans, x[i][j] - x[i][j - k] + y[i][j] - y[i - k][j]);
    cout << tot + ans << endl;
    return 0;
}

D.Subway Pursuit

题意

现在有一个数字让你去猜,你可以问是否在一个区间中,但每次猜完之后,它会向左或向右移动0~k个位置,要求在4500次以内猜到这个数字

思路

二分大概找到这个数字的范围,比如缩到50左右的时候开始猜。然后没猜中之后,将区间向左向右各放大k个即可进行下次二分。

代码

/*
 * @Author: Icey_dying
 * @Date: 2021-09-27 12:40:07
 * @LastEditors: Icey_dying
 * @LastEditTime: 2021-09-27 12:48:43
 * @FilePath: \Icey_dying\competition\2021\2021.09\2021.9.23\D.cpp
 */
#include <bits/stdc++.h>
using namespace std;
#define ll long long
char a[10];
bool query(ll l, ll r)
{
    cout << l << ' ' << r << endl;
    fflush(stdout);
    scanf("%s", a);
    if (a[0] == 'Y')
        return 1;
    return 0;
}
ll n, l, r;
int k;
int main()
{
    srand(time(0));
    cin >> n >> k;
    l = 1;
    r = n;
    while (1) {
        while (r - l > 50) {
            ll mid = (l + r) / 2;
            if (query(l, mid))
                r = mid;
            else
                l = mid + 1;
            l = max(1ll, l - k);
            r = min(n, r + k);
        }
        ll p = rand() % (r - l + 1) + l;
        if (query(p, p))
            return 0;
        l = max(1ll, l - k);
        r = min(n, r + k);
    }
    return 0;
}

E.Network Safety

题意

一个图是安全的是指边上的两点的点权不同。现有一个安全的图,可以向它进行操作:对某些点进行将它的点权与x异或,进行操作后还是安全的图。现在问有多少种不同的方案。

思路

x的范围为 0 0 0~ 2 k − 1 2^{k}-1 2k1,图有n个点,那么总共的方案数为 2 k + n 2^{k+n} 2k+n种(包括不合法的方案)
设大写字母为点,小写字母为点权
如果现在选择A,B两点,那么A,B两点无论怎么进行异或,都不会破坏图的安全性,因为原本的图是安全的,a,b不同,异或同一个数后也各不相同
那么现在破坏图的安全性只有一种可能性,我选了A,没选B,而 a ⨁ x = b a\bigoplus x=b ax=b
对于一条边,我们知道了要让图不安全就是只选两端点中的一个且两点异或值为x
那么当 x = a ⨁ b x=a\bigoplus b x=ab时,必须同时选择AB两点,所以可以把它们当成一点
我们合并k个点后,这k点之间的异或值都不等于x,我们可以有 2 k 2^k 2k个选法

代码

/*
 * @Author: Icey_dying
 * @Date: 2021-09-27 12:55:18
 * @LastEditors: Icey_dying
 * @LastEditTime: 2021-09-27 13:23:29
 * @FilePath: \Icey_dying\competition\2021\2021.09\2021.9.23\E.cpp
 */
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const ll mod = 1e9 + 7;
const int N = 5e5 + 5;
int n, m, k;
ll b[N];
ll ans;
map<ll, int> a;
map<ll, int> g[N];
ll quickmod(ll x, ll y)
{
    ll ret = 1;
    while (y) {
        if (y & 1)
            ret = ret * x % mod;
        x = x * x % mod;
        y /= 2;
    }
    return ret;
}
int find(int x, ll key)
{
    if (g[x][key] == x)
        return x;
    return g[x][key] = find(g[x][key], key);
}
int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    cin >> n >> m >> k;
    ans = quickmod(2, k + n);
    for (int i = 1; i <= n; i++)
        cin >> b[i];
    for (int i = 1, x, y; i <= m; i++) {
        cin >> x >> y;
        ll key = b[x] ^ b[y];
        if (!g[x][key])
            g[x][key] = x;
        if (!g[y][key])
            g[y][key] = y;
        int fx = find(x, key);
        int fy = find(y, key);
        if (fx == fy)
            continue;
        else
            g[fx][key] = g[fy][key];
        // ans = ((ans - quickmod(2, n - a[key])) % mod + mod) % mod;
        a[key]++;
        ans = (ans - quickmod(2, n - a[key]) + mod) % mod;
    }
    cout << ans << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值