ID3 决策树 Python实现

本博文的内容主要是在自学《Machine Learning in Action》的中文版《机器学习实战》的小结,原书中对调用的一些模块的函数并没有做出过多的解释,本文进行了总结和补充。

算法原理

根据信息增益的评判准则,选择一个当前最优的特征对数据集进行分割,递归此操作,直到最后被分割的子数据集只含有一种类型的样本或者用完所有的特征,最后选择该子集中多数的类别最为该子集的最终类别(当然也可以有)。

信息增益

熵(Entropy):指信息的期望值
熵是一个很玄的概念,人类的成长过程其实就是一个降低熵的过程,就像人刚出生事,大脑内的每一个神经元都是互相连接的,然后随着年龄的增长不断的断掉一些相互连接的神经元。这个过程也可以理解为人类将大自然的信息不断的总结,提炼,精简。这个过程就是熵的降低。人之所以感到学习痛苦大抵是这个原因。

熵的定义公式

如果呆分类的事务可能划分在多个分类之中,则符号 xi 的信息定义为:

l(xi)=log2p(xi)

p(xi) 为该类别的概率。
该数据集分熵为所有类别所有可能值包含的信息期望值:
H=i=1np(xi)log2p(xi)

Python代码计算熵

def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    #计算每个类别出现的次数
    for featVec in dataSet:
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    #计算香农熵
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob * log(prob,2)
    return shannonEnt

上述熵的计算是计算一个集合的熵,而计算根据一个特征分割成的所有数据子集的熵需要将每个子集的熵乘以该子集的概率最后求和。这一部分的Python代码如下:

for value in uniqueEntropy:
            subDataSet =                                         splitDataSet(dataSet,i,value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)

ID3 Python实现

整个ID3 决策树的Python代码实现如下:

#-*- coding:utf-8 -*-
from math import log

def createDataSet():
    dataSet=[[1,1,'yes'],[1,1,'yes'],[1,0,'no'],[0,1,'no'],[0,0,'no']]
    labels=['no surfacing','flippers']
    return dataSet,labels

#计算给定数据集的香农熵
def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    #计算每个类别出现的次数
    for featVec in dataSet:
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    #计算香农熵
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob * log(prob,2)
    return shannonEnt
#按照给定特征划分数据集
def splitDataSet(dataSet,axis,value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet
#选择最好的数据集划分方式
def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0])-1
    baseEntroy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0; bestFeature = -1
    for i in range(numFeatures):
        featList = [example[i] for example in dataSet]
        uniqueEntropy = set(featList)
        newEntropy = 0.0
        for value in uniqueEntropy:
            subDataSet = splitDataSet(dataSet,i,value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)
        infoGain = baseEntroy -newEntropy
        if (infoGain>bestInfoGain):
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature
#如果数据集已经处理了所有属性,但类标签依然不唯一,则返回类标签出现次数最多的分类名称
def majorityCnt(classList):
    classCount = {}
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.iteritems(),key=classCount.iteritems(1),reverse=True)
    return sortedClassCount[0][0]

#创建决策树
def createTree(dataSet,labels):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    if len(dataSet[0]) == 1:
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLables = labels[:]
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet,bestFeat,value),subLables)
    return myTree
def classify(inputTree, featLabels, testVec):
    firstStr = inputTree.keys()[0]
    secondDict = inputTree[firstStr]
    featIndex = featLabels.index(firstStr)
    for key in secondDict.keys():
        if testVec[featIndex] == key:
            if type(secondDict[key]).__name__=='dict':
                classLabel = classify(secondDict[key],featLabels,testVec)
            else: classLabel = secondDict[key]
    return classLabel
def storeTree(inputTree,fileName):
    import pickle
    fw = open(fileName,'w')
    pickle.dump(inputTree,fw)
    fw.close()
def grabTree(filename):
    import pickle
    fr = open(filename)
    return pickle.load(fr)
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
ID3决策树是一种经典的机器学习算法,用于分类问题。下面是ID3决策树Python实现的基本步骤: 1. 数据准备:首先,需要准备一个包含特征和标签的数据集。特征可以是离散值或连续值,标签是分类的结果。 2. 计算信息增益:使用信息增益来选择最佳的特征作为当前节点的划分依据。信息增益表示在已知某个特征的情况下,对分类结果的不确定性减少程度。 3. 构建决策树:根据信息增益选择最佳特征后,将该特征作为当前节点的划分依据,并根据该特征的取值创建子节点。递归地对每个子节点进行上述步骤,直到满足终止条件(如所有样本属于同一类别或没有更多特征可供选择)。 4. 预测:使用构建好的决策树对新样本进行分类预测。 下面是一个简单的ID3决策树Python实现示例: ```python import numpy as np def calc_entropy(labels): # 计算标签的熵 unique_labels, counts = np.unique(labels, return_counts=True) probabilities = counts / len(labels) entropy = -np.sum(probabilities * np.log2(probabilities)) return entropy def calc_information_gain(data, labels, feature_index): # 计算特征的信息增益 feature_values = np.unique(data[:, feature_index]) entropy = calc_entropy(labels) new_entropy = 0 for value in feature_values: subset_labels = labels[data[:, feature_index] == value] subset_entropy = calc_entropy(subset_labels) subset_probability = len(subset_labels) / len(labels) new_entropy += subset_probability * subset_entropy information_gain = entropy - new_entropy return information_gain def create_decision_tree(data, labels, features): # 创建决策树 if len(np.unique(labels)) == 1: # 如果所有样本属于同一类别,则返回该类别作为叶节点 return labels if len(features) == 0: # 如果没有更多特征可供选择,则返回样本中最多的类别作为叶节点 unique_labels, counts = np.unique(labels, return_counts=True) return unique_labels[np.argmax(counts)] best_feature_index = np.argmax([calc_information_gain(data, labels, i) for i in range(len(features))]) best_feature = features[best_feature_index] decision_tree = {best_feature: {}} feature_values = np.unique(data[:, best_feature_index]) for value in feature_values: subset_data = data[data[:, best_feature_index] == value] subset_labels = labels[data[:, best_feature_index] == value] subset_features = features.copy() subset_features.remove(best_feature) decision_tree[best_feature][value] = create_decision_tree(subset_data, subset_labels, subset_features) return decision_tree def predict(decision_tree, sample): # 使用决策树进行预测 if isinstance(decision_tree, str): return decision_tree feature = list(decision_tree.keys()) value = sample[feature] subtree = decision_tree[feature][value] return predict(subtree, sample) # 示例用法 data = np.array([[1, 'S', 'M'], [1, 'M', 'M'], [1, 'M', 'L'], [1, 'S', 'L'], [1, 'S', 'M'], [2, 'S', 'M'], [2, 'M', 'M'], [2, 'M', 'L'], [2, 'L', 'L'], [2, 'L', 'L'], [3, 'L', 'L'], [3, 'M', 'L'], [3, 'M', 'M'], [3, 'L', 'M'], [3, 'L', 'L']]) labels = np.array(['N', 'N', 'Y', 'Y', 'N', 'N', 'N', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'Y', 'N']) features = ['age', 'income', 'student'] decision_tree = create_decision_tree(data, labels, features) sample = {'age': 2, 'income': 'M', 'student': 'M'} prediction = predict(decision_tree, sample) print("预测结果:", prediction) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值