数据归一化处理
- 公式:(每个值-最小值)/(最大值-最小值)
- 数据归一化处理,不会改变数据原有的分布情况
- 模拟的数据集
data = [[-1,201],[-0.5,189],[0,199],[1,187],[1,200],[2,196]]
data = pd.DataFrame(data)
data
手动处理
- 以其中一列为例(具体根据业务场景)
data[1] =(data[1]-data[1].min())/(data[1].max()-data[1].min())
data
使用sklearn中prepprocessing 中的MinMaxScaler
from sklearn.preprocessing import MinMaxScaler
mms = MinMaxScaler()
mms.fit(data)
data_new = pd.DataFrame(mms.transform(data))
data_new