KNN算法数据归一化处理(持续更新中)

本文详细介绍了KNN算法中的数据归一化处理,包括手动处理方法和使用sklearn的MinMaxScaler,强调了归一化不改变数据分布的重要性。同时,讨论了KNN算法的优缺点,如计算效率低、对噪声敏感和需要归一化等,并提出模型优化应关注运算速度、可解释性和模型效果,遵循先训练集后测试集的归一化原则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据归一化处理

  • 公式:(每个值-最小值)/(最大值-最小值)
  • 数据归一化处理,不会改变数据原有的分布情况
  • 模拟的数据集
data = [[-1,201],[-0.5,189],[0,199],[1,187],[1,200],[2,196]]
data = pd.DataFrame(data)
data

在这里插入图片描述

手动处理

  • 以其中一列为例(具体根据业务场景)
data[1] =(data[1]-data[1].min())/(data[1].max()-data[1].min())
data

在这里插入图片描述

使用sklearn中prepprocessing 中的MinMaxScaler

from sklearn.preprocessing import MinMaxScaler
mms = MinMaxScaler()
mms.fit(data)
data_new = pd.DataFrame(mms.transform(data))
data_new

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值