自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

原创 pytorch笔记13--过拟合&dropout

导致过拟合的原因:训练网络的数据量太少;网络神经元太多; 解决过拟合:增加训练时的数据量;正规化;dropout(每次随机丢弃一定数量的neuron,防止对神经元的过分依赖) 1. 训练过程用两个不同的网络测试,动图如下:(自己截动图很麻烦,所以从网上拿来的) 2. 自己运行的结果图如下...

2020-04-02 21:44:47

阅读数 14

评论数 0

原创 pytorch笔记12--无监督的AutoEncoder(自编码)

1. AutoEncoder: 给特征属性降维 2. Data---->压缩(提取Data的关键信息,减小网络的运算压力)---->data(具有代表性的特征)---->解压(还原数据信息)---->Pred_Data 3. 使用Mnist数据集训练,将数据先压缩再解压...

2020-03-31 20:50:05

阅读数 42

评论数 0

原创 pytorch笔记11_RNN回归

用sin曲线你个cos上的数据: # 用sin曲线拟合cos曲线上的数据 import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt torch.manual_seed(1)...

2020-03-31 14:58:29

阅读数 29

评论数 0

原创 pytorch笔记10--RNN 图片分类

图片如下: # RNN循环神经网络 分类 (时间顺序,图片从上往下读取) import torch import torch.nn as nn import torchvision.datasets import torchvision.transforms as transforms ...

2020-03-27 21:48:33

阅读数 40

评论数 0

原创 pytorch笔记9--CNN & GPU加速

数字识别 #数字识别 import torch import torch.nn as nn import torch.utils.data as Data import torchvision import matplotlib.pyplot as plt torch.manual_see...

2020-03-26 18:39:31

阅读数 28

评论数 0

原创 pytorch笔记8--optimizer

对比各种优化器的效果 数据分布如下图: import torch import torch.utils.data as Data import torch.nn.functional as Func from matplotlib import pyplot as plt torch....

2020-03-24 23:36:07

阅读数 10

评论数 0

原创 torch.squeeze()和unsqueeze()

注:torch.squeeze()和torch.unsqueeze()的用法 torch.squeeze(x,dim,out):对数据的维度进行压缩,去掉维数为1的维度,默认将a中所有为1的维度删掉,也可以通过dim指定位置,删掉指定位置的维数为1的维度。 import torch dat...

2020-03-24 22:45:26

阅读数 15

评论数 0

原创 pytorch笔记7--批训练

import torch import torch.utils.data as Data #用于小批训练 torch.manual_seed(1) #为cpu设置随机种子,使多次运行结果一致 # torch.cuda.manual_seed(seed) #为当前GPU设置随机种子 #t...

2020-02-06 12:31:48

阅读数 27

评论数 0

原创 深度学习笔记--Kaggle比赛之房价预测

#获取和读取数据 import torch import torch.nn as nn import pandas as pd #处理数据 import All_function as func #自定义包 torch.set_default_tensor_type(t...

2019-11-26 15:34:50

阅读数 40

评论数 0

原创 深度学习笔记--Fashion_mnist+softmax的简单实现

1. 主文件 import torch import All_function as func import torch.nn as nn #获取数据 batch_size=256 train_iter,test_iter=func.load_data_fashion_minist(256)...

2019-11-13 11:59:35

阅读数 37

评论数 0

原创 关于深度可分离卷积可以减少计算量的问题

一、什么是深度可分离卷积?深度可分离卷积的操作流程? 二、为什么深度可分离卷积的计算量比普通卷积的计算量要小? 例如:12*12*3的原始图像用256个5*5*3的卷积核卷出8*8*256的结果(stride=1) 1. 使用原始的卷积方法的计算量:256*(5*5*3)*(8*8)=122...

2019-09-29 23:14:06

阅读数 633

评论数 0

原创 可分离卷积:空间可分离卷积和深度可分离卷积

空间可分离卷积:将一个卷积核分为两部分(降低计算复杂度,但并非所有的卷积核都可以分) 深度可分离卷积的过程:先深度卷积,再点态卷积 (对卷积中的通道数不了解的请参考:关于卷积中的通道数问题) 1. 深度卷积过程:对于一个12*12*3的像素图用一个3通道的5*5*...

2019-09-29 23:09:31

阅读数 414

评论数 0

原创 卷积过程中关于通道数的问题

以RGB图像为例。 一个12*12的像素图,对其进行5*5的卷积,最后得到一个8*8的像素图。 RGB图像有3个通道(12*12*3),所以卷积核也要有3个通道(5*5*3),对像素图进行卷积后得到的结果是8*8*1而不是8*8*3的图像。最后像素图的深度(输出图像的信道数)取决于卷积核的个数...

2019-09-29 23:04:46

阅读数 618

评论数 0

原创 语义分割论文V3+总结

论文:《Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation》 论文主要的进展和贡献 1. DeepLabv3+ = DeepLabv3 + decoder model: 空间...

2019-09-29 22:57:54

阅读数 58

评论数 0

原创 梯度下降:BGD、SGD、MBGD的区别

梯度下降法分为三种形式:批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent)和小批量梯度下降(Mini-Batch Gradient Descent) 批量梯度下降(BGD) 每次迭代时使用所有的样本来更新参...

2019-09-29 17:32:12

阅读数 89

评论数 0

原创 pytorch笔记6--网络的保存和提取

一、步骤 1.创建数据 import torch import torch.nn import matplotlib.pyplot as plt from torch.autograd import Variable x=torch.unsqueeze(torch.linspace(-1,1...

2019-08-20 16:13:39

阅读数 87

评论数 0

原创 pytorch笔记5--分类

一、描述: 用简单的例子看一下神经网络是怎么分类的: 二、步骤 1.创建数据 import torch import matplotlib.pyplot as plt import torch.functional as func from torch.autograd import...

2019-08-19 19:54:10

阅读数 57

评论数 0

原创 pytorch笔记4--回归(关系拟合)

一、描述 神经网络如何通过简单的形式将一群数据用一条线在表示。找到数据之间的关系,然后通过神经网络模型来建立一个可以表示他们关系的曲线。 二、步骤 1.创建数据集: 创建一些假数据来模拟。令,给y加上一些噪声。 import torch import matplotlib.pypl...

2019-08-17 21:40:08

阅读数 152

评论数 0

原创 pytorch学习笔记3--activation function 激活函数

一、什么是激活函数 激活函数在深度学习中应用广泛。所谓激活函数,就是在神经网络的神经元上运行的函数,负责将神经元的输入(input layer)映射到输出端(output layer),也就是对隐藏层(hidden layer)进行处理的函数。常见的激活函数包括sigmoid、tanh、relu...

2019-08-16 12:41:31

阅读数 95

评论数 0

原创 pytorch学习笔记2--Variable变量

一、Variable是什么? 在torch中的Variable就是一个存放会变化的值的地理位置,里面的值会不断的变化。就像是一个装鸡蛋的篮子,里面的鸡蛋数会不停变动。就是torch里面的tensor会不断的变化,如果用Variable进行计算,那么返回的也是同一类型的Variable。 im...

2019-08-16 11:09:26

阅读数 41

评论数 0

原创 pytorch学习笔记1--torch和numpy的对比

一、numpy和torch numpy是python中处理数据的模块,可以处理各种的矩阵(matrix)。 Torch自称为神经网络中的numpy。它会将torch产生的tensor放在GPU中加速运算,就像numpy会把array放在CPU中加速运算。 numpy和torch能很好的兼容,对...

2019-08-15 21:15:19

阅读数 680

评论数 0

原创 机器学习实战--决策树算法实例之判断海洋生物(ID3)

1.实例描述: 下表中有5组数据,两个特征,根据着两组特征判断这个样本是不是鱼类。 海洋生物数据 不付出水面是否可以生存(no surfacing) 是否有脚蹼(flippers) 属于鱼类 1 1 1 yes 2 1 1 ye...

2019-08-08 21:18:13

阅读数 130

评论数 0

原创 机器学习实战2.4--决策树之递归构建决策树

1.递归构建决策树 从数据集中构建决策树的流程如下:得到原始的数据集,然后基于最好的特征划分数据集,由于特征可能有多个,因此可能存在大于两个分支的数据集划分。第一次划分之后,数据集将被向下传递到树分支的下一个节点,在这个节点上,可以再次划分数据。所以采用递归的原则处理数据集。 递归结束的条件:...

2019-08-08 21:03:45

阅读数 85

评论数 0

原创 机器学习实战2.3--决策树之选择最好的数据集划分方式

1.划分数据集的依据 划分数据集最大的原则是:将无序的数据变得更加有序。在划分数据集之前之后信息发生的变化称为信息增益,获得信息增益最高的特征就是最好的选择。 怎样恒量信息增益呢?之前的一篇博客介绍了熵的概念。信息增益是上的减少或者数据无序度的减少。也就是说熵越小说明数据越有序。 2.怎样选...

2019-08-08 12:18:55

阅读数 212

评论数 0

原创 机器学习实战2.2--决策树之划分数据集

1.实现数据集划分代码如下: #按照给定的特征划分数据集 def splitDataSet(dataSet,feature,value): reDataSet=[] for featureVector in dataSet: if featureVector[f...

2019-08-08 10:47:24

阅读数 48

评论数 0

原创 机器学习实战2.1--决策树之求数据集的香农熵

1.什么是香农熵? 集合信息的度量方式称为香农熵或者简称为熵。 熵定义为信息的期望值,在明晰这个概念之前,我们必须知道信息的定义。如果待分类的事务可能划分在多个分类之中,则符号的信息定义为: 其中是选择该分类的概率。 为了计算熵,我们需要计算所有类别所有可能...

2019-08-07 22:23:34

阅读数 68

评论数 0

原创 机器学习实战--KNN算法实例之手写数字识别

1.示例描述: 系统识别的数字为0-9。数字图像为32*32的二进制图像,目录trainingDigits中大约2000个样本用于训练算法,目录testDigits中大约有900个样本用于测试。 数字图像以二进制的形式存储在记事本中。数字图像的形式如下所示,文件以数字的标签命名,下面这个数字图...

2019-08-07 11:58:18

阅读数 208

评论数 0

原创 机器学习实战--KNN算法实例之约会网站

下面的部分是机器学习实战(Machine Learning in Action)一书中关于KNN算法实现约会网站配对实例的代码整合。 1.示例描述如下: 海莉使用约会网站寻找适合自己的约会对象,她将自己的约会对象分为三类:不喜欢、一般喜欢、非常喜欢。海莉希望分类软件能很好的帮助她将匹配对象划分...

2019-08-06 22:17:43

阅读数 167

评论数 0

原创 机器学习实战1.4--KNN之利用分类器对数据进行测试

利用已有的数据集对分类函数进行测试,并计算错误率。用已有数据的10%作为测试数据,剩下的数据作为训练数据。错误率为错误结果的次数除以测试数据的总数。 #利用分类器针对数据进行测试(数据的前10%用做测试数据,剩下的数据用作训练数据),并计算错误率 def Test(): hoRatio=...

2019-08-06 17:42:23

阅读数 80

评论数 0

原创 机器学习实战1.3--KNN之归一化数值

当根据数据集中提供的数据计算样本之间的距离时,可以使用欧式距离公式,例如: 很容易发现,上面方程中数字差值最大的属性对计算结果的影响最大。但是如果这三种特征同等重要,就需要对原始数据进行改进。 在处理这种不同取值范围的特征值时,我们通常采用的方法是将数值归一化,如将取值范围处理为0 - 1...

2019-08-06 11:08:05

阅读数 134

评论数 0

原创 Matplotlib之animation动画

用animation画一个y=sin(x)的动画函数。 代码如下: from numpy import * import matplotlib.pyplot as plt from matplotlib import animation fig,ax=plt.subplots() #相...

2019-07-27 21:53:40

阅读数 541

评论数 0

原创 Matplotlib之主次坐标轴

画出下图所示的坐标图: 代码如下: import matplotlib.pyplot as plt from numpy import * x=arange(0,10,0.1) y1=0.05*x**2 y2=-1*y1 fig,ax1=plt.subplots() ax2=ax1.tw...

2019-07-27 20:55:04

阅读数 256

评论数 0

原创 Matplotlib之axes图中图

编写代码画出下图所示的函数图: 代码如下: import matplotlib.pyplot as plt x=[1,2,3,4,5,6,7] y=[1,3,4,2,5,8,6] plt.figure() plt.axes([0.1,0.1,0.8,0.8]) #left=0.1,b...

2019-07-27 17:33:07

阅读数 242

评论数 0

原创 Matplotlib之subplot分格显示 2

1.方法一:subplot2grid()函数 例一:用subplot2grid()函数画出下图中的函数: 代码如下: import matplotlib.pyplot as plt from numpy import * x=linspace(0,1,5) plt.figure() ...

2019-07-27 16:42:46

阅读数 133

评论数 0

原创 Matplotlib之subplot分格显示 1

编写代码画出下列例子中的图片: 例一: 代码如下: import matplotlib.pyplot as plt from numpy import * plt.figure() plt.subplot(2,2,1) #将图片分为2行2列,取第1个部分画图 plt.plot([...

2019-07-27 14:34:06

阅读数 107

评论数 0

原创 meshgrid(x,y)函数的应用

1.功能 meshgrid(x,y)用于生成绘制3D图形所需的网格数据。在计算机中进行绘图操作时,往往需要一些采样点,然后根据这些采样点绘制出整个图形。在绘制3D图形时需要有x,y,z三组数据,x,y这两组数据可以看作是在XOY平面内对坐标进行采样而得到的坐标对(x,y)。 2.meshgri...

2019-07-23 17:19:13

阅读数 472

评论数 0

原创 Matplotlib之3D图像

怎样画出如下所示的3D图像: 代码如下: import matplotlib.pyplot as plt from numpy import * from mpl_toolkits.mplot3d import Axes3D #设置坐标轴 fig=plt.figure() #定义一个...

2019-07-23 16:34:15

阅读数 237

评论数 0

原创 Matplotlib之Image图像

编写代码显示类似于下面的图像: 代码: import matplotlib.pyplot as plt from numpy import * a=array([0.1,0.2,0.3, 0.4,0.5,0.6, 0.7,0.8,0.9]).resha...

2019-07-23 12:05:24

阅读数 1106

评论数 0

原创 Matplotlib之contuor等高线图

画出类似于下图的等高线图: 代码如下: import matplotlib.pyplot as plt from numpy import * n=256 x=linspace(-3,3,n) y=linspace(-3,3,n) X,Y=meshgrid(x,y) Z=(1-X/2+X...

2019-07-21 19:49:53

阅读数 249

评论数 0

原创 Matplotlib之bar柱状图

编写代码画出与下图类似的柱状图: 代码如下: import matplotlib.pyplot as plt from numpy import * n=10 X=arange(n) #返回结果是一个数组:array([1 2 3 4 5 6 7 8 9])。range()函数返回...

2019-07-20 12:26:30

阅读数 65

评论数 0

提示
确定要删除当前文章?
取消 删除