棋盘上 AA 点有一个过河卒,需要走到目标 BB 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 CC 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。
棋盘用坐标表示,AA 点 (0, 0)(0,0)、BB 点 (n, m)(n,m),同样马的位置坐标是需要给出的。
现在要求你计算出卒从 AA 点能够到达 BB 点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。
输入格式
一行四个正整数,分别表示 BB 点坐标和马的坐标。
输出格式
一个整数,表示所有的路径条数。
题目链接:https://www.luogu.com.cn/problem/P1002
这道题用了dp算法(开始以为是搜索emmm)
基本关系式:f[i][j]=max(f[i−1][j]+f[i][j−1],f[i][j])
马走日!!
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define inf 100010
#define ll long long
#define INF 0x7fffffff
#define ull unsigned long long
using namespace std;
const int fx[] = {0, -2, -1, 1, 2, 2, 1, -1, -2};
const int fy[] = {0, 1, 2, 2, 1, -1, -2, -2, -1};
inline int read(){
int num = 0; char c = getchar(), up = c;
while(c < '0' || c > '9') up = c, c = getchar();
while(c >= '0' && c <= '9') num = (num << 1) + (num << 3) + (c ^ '0'), c = getchar();
return up == '-' ? -num : num;
}
int bx, by, mx, my;
ull f[40];//这次只需要一维数组啦
bool s[40][40];
int main(){
bx = read(); by = read();
mx = read(); my = read();
bx += 2; by += 2; mx += 2; my += 2;
f[2] = 1;//初始化
s[mx][my] = 1;
for(int i = 1;i <= 8; i++)
s[ mx + fx[i] ][ my + fy[i] ]=1;
for(int i = 2; i <= bx; i++){
for(int j = 2; j <= by; j++){
if(s[i][j]){
f[j] = 0;//还是别忘了清零
continue;
}
f[j] += f[j - 1];
//全新的 简洁的状态转移方程
}
}
printf("%llu\n", f[by]);
return 0;
}
总之第一天的学习受益还是蛮不错的,希望学习状态越来越好。