BZOJ 1801 [AHOI 2009] 中国象棋(DP)

10 篇文章 1 订阅
1 篇文章 0 订阅

题意

在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮。 请问有多少种放置方法。
N,M <= 100

题解

发现每行每列都最多放两个,直接按行DP。

f [ i ] [ j ] [ k ] f[i][j][k] f[i][j][k]表示到第 i i i行,有 j j j列放了 1 1 1个, k k k列放了 2 2 2个。

那么这一行就有三种情况:

  • 不放
  • 1 1 1个,又有两种情况
    • 放在之前没有棋子的列上
    • 放在已经有 1 1 1个棋子的列上
  • 2 2 2个,有三种情况
    • 两个都放在没有棋子的列上
    • 两个都放在已经有 1 1 1个棋子的列上
    • 一个放在没有棋子的列上,一个放在已经有 1 1 1个棋子的列上

转移显然。

CODE

#pragma GCC optimize ("O2")
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 105;
const int mod = 9999973;
int f[MAXN][MAXN][MAXN], n, m;
inline int calc(int n) { return (1ll * n * (n-1) / 2) % mod; }
int main () {
	scanf("%d%d", &n, &m);
	f[0][0][0] = 1;
	for(int i = 1; i <= n; ++i)
		for(int j = 0; j <= m; ++j)
			for(int k = 0; k+j <= m; ++k) {
				f[i][j][k] = f[i-1][j][k];
				
				if(j) f[i][j][k] = (f[i][j][k] + 1ll * f[i-1][j-1][k] * (m-(j-1)-k) % mod) % mod;
				if(k) f[i][j][k] = (f[i][j][k] + 1ll * f[i-1][j+1][k-1] * (j+1) % mod) % mod;
				
				if(j>1) f[i][j][k] = (f[i][j][k] + 1ll * f[i-1][j-2][k] * calc(m-(j-2)-k) % mod) % mod;
				if(k>1) f[i][j][k] = (f[i][j][k] + 1ll * f[i-1][j+2][k-2] * calc(j+2) % mod) % mod;
				if(j) f[i][j][k] = (f[i][j][k] + 1ll * f[i-1][j][k-1] * (m-j-(k-1)) % mod * j % mod) % mod;
			}
	int ans = 0;
	for(int j = 0; j <= m; ++j)
		for(int k = 0; k+j <= m; ++k)
			ans = (ans + f[n][j][k]) % mod;
	printf("%d\n", (ans + mod) % mod);
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值