【模板】ST表

ST表


S T ST ST 表用于解决 R M Q RMQ RMQ 问题,即给定一列数,每次询问区间 [ l , r ] [l,r] [l,r] 的最大/小值。

静态预处理

S T ST ST 表在使用前需要进行预处理,时间复杂度为 O ( n ) O(n) O(n) ,用倍增的思想,用一个数组 F i , j F_{i,j} Fi,j 表示以 i i i 为起点的长度为 2 j 2^j 2j 的区间的最值,用动态规划的思想来进行转移,即用两个小区间来表示大区间,以此我们得到状态转移方程为 F i , j = min ⁡ ( F i , j − 1 ,   F i + 2 j − 1 , j − 1 ) F_{i, j} = \min(F_{i,j-1},\,F_{i + 2^{j-1},j-1}) Fi,j=min(Fi,j1,Fi+2j1,j1) ,初始状态为 F i , 0 = A [ i ] F_{i,0} = A[i] Fi,0=A[i]

我们还可以预处理的是 l o g log log 数组,我们需要频繁的用到它(以 2 2 2 为底的对数),因此我们也可以进行一个预处理,其状态转移方程为 l o g i = l o g i / 2 + 1 log_{i} = log_{i/2} + 1 logi=logi/2+1

for (int i = 1; i <= n; i++)
		ST[i][0] = A[i], Log[i] = Log[i >> 1] + 1;
	for (int j = 1; j < 25; j++)
		for (int i = 1; i + (1 << j) - 1 <= n; i++)
			ST[i][j] = max(ST[i][j - 1], ST[i + (1 << j - 1)][j - 1]);

查询

进行预处理后,我们需要考虑如何用上处理好的值,我们需要找到两个区间,使其完全包含 [ l , r ] [l,r] [l,r] ,那么我们就可以对区间长度取 l o g log log ,这样我们就得到了两个小区间的长度为 2 k 2 ^ k 2k,之后只需要返回 min ⁡ F i , k ,   F j − 2 k + 1 , k \min{F_{i, k},\,F_{j - 2^k + 1,k}} minFi,k,Fj2k+1,k 即可。

l = read(), r = read();
int k = Log[r - l + 1];
printf("%d\n", max(ST[l][k], ST[r - (1 << k) + 1][k]));

我们可以发现,查询时两个小区间可能会有重叠部分,这对于最值来说并无影响,但是对于区间和一类的就会产生错误。

【模板】ST 表

#include <bits/stdc++.h>
#define maxn 200005
using namespace std;
int Log[maxn], ST[maxn][25], A[maxn];
int n, m;
inline int read() {
	int ret = 0, f = 1;
	char ch = getchar();
	while (ch < '0' || ch > '9') {
		if (ch == '-')
			f = -f;
		ch = getchar();
	}
	while (ch >= '0' && ch <= '9') {
		ret = (ret << 1) + (ret << 3) + (ch ^ '0');
		ch = getchar();
	}
	return ret * f;
}
int main() {
	n = read(), m = read();
	for (int i = 1; i <= n; i++)
		A[i] = read();
	Log[0] = -1;
	for (int i = 1; i <= n; i++)
		ST[i][0] = A[i], Log[i] = Log[i >> 1] + 1;
	for (int j = 1; j < 25; j++)
		for (int i = 1; i + (1 << j) - 1 <= n; i++)
			ST[i][j] = max(ST[i][j - 1], ST[i + (1 << j - 1)][j - 1]);
	for (int i = 0, l, r; i < m; i++) {
		l = read(), r = read();
		int k = Log[r - l + 1];
		printf("%d\n", max(ST[l][k], ST[r - (1 << k) + 1][k]));
	}
	return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
ST是一种用于快速查询区间最值的数据结构。它的核心思想是对区间进行预处理,将区间内的最值信息存储在一个二维数组中,然后利用这个数组进行查询。以下是一个求最大值的ST模板代码: ``` const int MAXN = 100005; const int MAXLOGN = 20; int a[MAXN]; int st[MAXN][MAXLOGN]; void init(int n) { for (int i = 1; i <= n; i++) { st[i][0] = a[i]; } for (int j = 1; (1 << j) <= n; j++) { for (int i = 1; i + (1 << j) - 1 <= n; i++) { st[i][j] = max(st[i][j-1], st[i+(1<<(j-1))][j-1]); } } } int query(int l, int r) { int k = log2(r-l+1); // k为最大的2的幂次方,使得2^k <= r-l+1 return max(st[l][k], st[r-(1<<k)+1][k]); } int main() { int n, q; cin >> n >> q; for (int i = 1; i <= n; i++) { cin >> a[i]; } init(n); while (q--) { int l, r; cin >> l >> r; cout << query(l, r) << endl; } return 0; } ``` 这段代码中,init函数用于初始化ST,query函数用于查询区间最大值。具体来说,init函数的实现如下: 1. 将a[i]的值存储到st[i][0]中,示区间[i,i]的最大值为a[i]。 2. 对于每个j,计算区间[i,i+2^j-1]的最大值,存储在st[i][j]中。可以发现,区间[i,i+2^j-1]可以拆分为两个长度为2^(j-1)的子区间,即区间[i,i+2^(j-1)-1]和区间[i+2^(j-1),i+2^j-1]。因此,区间[i,i+2^j-1]的最大值等于区间[i,i+2^(j-1)-1]的最大值和区间[i+2^(j-1),i+2^j-1]的最大值中较大的一个。 query函数的实现也比较简单,首先计算k,然后查询区间[l,r]的最大值,等价于查询区间[l,l+2^k-1]的最大值和区间[r-2^k+1,r]的最大值中较大的一个。 求最小值的ST模板代码与求最大值的类似,只需要将max改为min即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值