ST表(Sparse Table)

介绍

ST表主要用于解决RMQ问题,也就是Range Maximum/Minimum Question,中文名为区间最大值/最小值问题。这类问题就是给你一个序列,再给你一个左右端点l和r,让你求区间 [l,r] 中的最大或最小值。最朴素的搜索便是遍历一次区间 [l,r] ,并对该区间进行排序。但对于n个数,m次操作,这个做法的时间复杂度高达O(m*n*logn),可以说是会彻彻底底的爆掉。于是便有了ST表这一做法,ST表主要应用了倍增思想,以O(n*logn)的时间复杂度预处理,并且以O(1)的时间复杂度进行查询,对于m次操作,仍有着低达O(n*logn+m)的时间复杂度,可以较快的通过RMQ问题。

正文

给定你一个序列后,并且给定l和r让你求它的最小值或者最大值,除了排序和二分以外,还有没有什么其他的做法呢?答案是肯定的。

比如给你一个序列5 7 2 5 3,第一次操作让你求区间(区间内的数字为序列元素的下标标号,也就是说区间 [l,r] 代表了第l和第r个元素)[1,4]的最大值,也就是5 7 2 5,那么你会你一眼就通过排序或者二分查找的方法找到了最大值7,可是不论如何,类似这样的边做边处理的方法的时间复杂度最好也只能达到O(n*m)。那么如果我们不边做边处理,而是提前把一些东西给预处理出来呢?这也是ST表的做法。

以求区间最大值为例。我们设一个数组 st[i][j] 表示一段以i开始,长度为2^{j}的序列的最大值。但是明显对于st数组我们不好直接处理出来,所以我们想想怎么找一个突破点来处理出st表。对于处理st数组,明显是需要用st这个数组它本身来处理st数组。所以说,我们可以先看看st数组有什么地方是能够直接预处理出来,不需要用它本身处理的。

我们不难发现,st[i][0]是比较容易处理出来的,因为st[i][0]表示一段以i开始,长度为2^0,也就是1的序列的最大值,由于该序列以i开始,长度为1,所以这个序列只包含了i这个元素。那么我们假设给出的序列为A,则很明显有st[i][0]=A[i],所以我们也可以在输入序列时直接输入st[i][0]。

那么既然st[i][0]有了,我们自然就可以处理出来st数组。由于是处理st数组,所以说i的范围是 [1,n] ,但是由于我们是使用了倍增的思想,所以我们的st数组的第二维是2^j,所以说我们要处理st数组时,我们自然需要满足2^j<=n。但是这也只是枚举了j这一维,我们还需要处理第一维。由于结束位置为最大为n,当前位置为,所以说序列 [i,n] 的长度为n-i+1,而st[i][j]代表的是起始位置为,长度为2^j的序列,所以为了使我们处理的序列的结束位置不越界,我们自然需要有2^j<=n-i+1。而且我们把要处理的长度为2^j的区间给二分一下,分成左右两个长度为2^(j-1)的区间,那么显然可以知道分成的左右两个区间分别是 [i,i+2^(j-1)-1] 和 [2^(j-1),i+2^j]。又由于st[i][j]的定义是一段以i开始,长度为2^j的序列的最大值,所以说st[i][j]所代表的最大值一定在它所分成的左右两个区间的有较大值的那一部分(是不是觉得有点像线段树),那么我们就很容易写出来st数组的处理:

void get_st()//将s数组处理出来 
{
	for(int j=1;(1<<j)<=n;j++)//j要满足2^j<=n,不能越界 
	{
		for(int i=1;(1<<j)<=n-i+1;i++)//i也要满足2^j<=n-i+1,也就是2^j不能超过序列的长度
			st[i][j]=max(st[i][j-1],st[i+(1<<(j-1))][j-1]);
	}
}

那么接下来我们就要进行查询了,查询的话自然是针对区间 [l,r] 进行处理。由于我们的st表是倍增的,所以说我们可以定义一个数k,有2^k不超过区间 [l,r] 的长度,也就是说我们定义的k其实就是

int k=log2(r-l+1);//2^k为不超过序列长度的最大的k(也就是向下取整)

那么查询的话就很好写了。我们定义的k可以保证,从l开始向r的方向的一个长为2^k的序列,与从r开始向l的方向的一个长为2^k的序列,是一定有交集的。所以说我们相当于是把区间 [l,r] 从l开始向右扫一个区间,从r开始向左扫一个区间,这两个区间用st数组记录下来后的最大值即为我们查询的结果。那么代码也很好写,直接放上查询部分的代码:

int query(int l,int r)
{
	int k=log2(r-l+1);//2^k为不超过序列长度的最大的k(也就是向下取整) 
	return max(st[l][k],st[r-(1<<k)+1][k]);
	//从一段序列的左侧(也就是从l开始)取一段长为2^k的序列 
	//从一段序列的右侧(也就是以r结尾,从r-(2^k)+1开始)取一段长为2^k的序列 
}

最后主函数就非常好写了,洛谷也有一道模板题P3865 【模板】ST 表,这里放上AC代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<cstring>
#include<algorithm>
#include<cassert>
#include<stack>
#include<queue>
#include<vector>
#include<map>
#include<cstdlib>
using namespace std;
#define ll long long
#define ull unsigned long long
int read()
{
	int now=0,nev=1; 
	char c=getchar();
	while(c<'0' || c>'9') 
	{ 
		if(c=='-') 
			nev=-1; 
		c=getchar();
	}
	while(c>='0' && c<='9') 
	{ 
		now=(now<<1)+(now<<3)+(c&15); 
		c=getchar(); 
	}
	return now*nev;
}
const int MAXN=1e5+10;
int n,m;
int st[MAXN][35];//开32以上保险,st[i][j]表示一段以i开始,长度为2^j的序列中的最小值 
void get_st()//将s数组处理出来 
{
	for(int j=1;(1<<j)<=n;j++)//j要满足2^j<=n,不能越界 
	{
		for(int i=1;(1<<j)<=n-i+1;i++)//i也要满足2^j<=n-i+1,也就是2^j不能超过序列的长度
			st[i][j]=max(st[i][j-1],st[i+(1<<(j-1))][j-1]);
	}
}
int query(int l,int r)
{
	int k=log2(r-l+1);//2^k为不超过序列长度的最大的k(也就是向下取整) 
	return max(st[l][k],st[r-(1<<k)+1][k]);
	//从一段序列的左侧(也就是从l开始)取一段长为2^k的序列 
	//从一段序列的右侧(也就是以r结尾,从r-(2^k)+1开始)取一段长为2^k的序列 
}
int main()
{
	n=read(),m=read();
	for(int i=1;i<=n;i++)
		st[i][0]=read();//一段以i开始,长度为2^0=1的一段序列中只有i,所以可以直接输入d[i][0] 
	get_st(); 
	for(int i=1;i<=m;i++)
	{
		int l,r;
		l=read(),r=read();
		printf("%d\n",query(l,r)); 
	}
	return 0;
}

结尾

最后呢来总结一下,ST表是一个少有的非常好理解并且好背并且代码还不容易写错还很有用的算法(,ST表利用了倍增的思想,用O(n*logn+m)的时间解决了RMQ问题。完结撒花(逃。

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值