差分约束问题

本文探讨了差分约束系统及其构图方法,介绍了一种将差分约束问题转化为最短路径问题的解决方案,并讨论了如何通过构建特定图结构来解决此类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

差分约束问题

模型

差分约束系统是一种特殊的 N N N 元一次不等式组 . . . 包含 N N N 个变量 x 1 ∼ x n x_1\sim x_n x1xn 以及 M M M 个约束条件 , , , 每个约束条件都是由两个变量作差构成的 , , , 形如 x i − x j ≤ c x x_i-x_j\le c_x xixjcx , , , 其中 c x c_x cx 是一个常数 , , , 1 ≤ i , j ≤ N , 1 ≤ k ≤ M . 1\le i,j\le N,1\le k\le M. 1i,jN,1kM. 求一组解 x i = a i , x_i=a_i, xi=ai, 是所有约束条件满足 . . .

每一个约束条件 x i − x j ≤ c x x_i-x_j \le c_x xixjcx 可以变形为 x i ≤ x j + c x . x_i\le x_j+c_x. xixj+cx. 这与最短路问题中的三角形不等式 D i s t y ≤ D i s t x + C o s t k Dist_y\le Dist_x+Cost_k DistyDistx+Costk 很相似 . . . 于是我们考虑对每一个形如 x i − x j ≤ c x x_i-x_j \le c_x xixjcx 的约束条件建一条有向边 ( j , i , c k ) , (j,i,c_k), (j,i,ck), 同时 , , , 注意到如果 { a i } \{a_i\} {ai} 是一组解 , , , 那么对于任意常数 Δ , \Delta, Δ, { a i + Δ } \{a_i+\Delta\} {ai+Δ} 显然也为原系统的一组解 , , , 于是可以建立起点 S , S, S, 连接 S S S 到 所有点 i , i, i, 边权为 0 0 0 的有向边 , , , D i s t S = 0 , Dist_S=0, DistS=0, 跑一遍单源最短路径 , , , 若出现了负环 , , , 说明恒存在路径 ( x , y , c ) , (x,y,c), (x,y,c), 使得 D i s t y > D i s t x + c , Dist_y>Dist_x+c, Disty>Distx+c, 故无解 . . . 否则 , , , { D i s t i } \{Dist_i\} {Disti} 为原系统的一组解 . . .

构图方法

x i − x j ≤ c x ⇒ ( j , i , c ) x i − x j ≥ c x ⇒ ( i , j , − c ) x i − x j = c x ⇒ ( i , j , c ) , ( j , i , c ) x i − x j < c x ⇒ ( j , i , c − E p s ) x i − x j > c x ⇒ ( i , j , − c − E p s ) x_i-x_j\le c_x \Rightarrow (j,i,c)\\ x_i-x_j\ge c_x\Rightarrow (i,j,-c)\\ x_i-x_j=c_x\Rightarrow (i,j,c),(j,i,c)\\ x_i-x_j<c_x\Rightarrow (j,i,c-Eps)\\ x_i-x_j>c_x\Rightarrow (i,j,-c-Eps) xixjcx(j,i,c)xixjcx(i,j,c)xixj=cx(i,j,c),(j,i,c)xixj<cx(j,i,cEps)xixj>cx(i,j,cEps)
最短路和最长路可以互相转化 . . .

若题目中没有适当的约束系统 , , , 这可以利用前缀和等有作差关系的变量构成系统 . . .

若题目中出现了多个变量的不等式 , , , 可以枚举或有单调性时二分冗余变量 , , , 并在二分时使冗余变量与超级源点的差为二分或枚举的值 , , , 强迫其相等 . . .

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值