转载于 : : : 这里
简单多面体欧拉定理 : : : 对于简单多面体 , , , 其各维对象数总满足一定的数学关系 , , , 在三维空间中设其顶点 , , , 边和面的数量分别为 V , E , F V,E,F V,E,F 则欧拉定理可表示为 : : :
V − E + F = 2 V - E + F = 2 V−E+F=2
对多面体的顶点数n进行数学归纳 : : :
-
顶点最少的多面体为四面体 , , , n = 4 n = 4 n=4 ( ( ( 三棱锥 ) , ), ), 验证得 V − E + F = 4 − 6 + 4 = 2 , V-E+F=4-6+4=2, V−E+F=4−6+4=2, 命题成立 . . .
-
假设定理对 n n n 个顶点的简单多面体成立 , , , 有 V n − E n + F n = 2. V_n-E_n+F_n=2. Vn−En+Fn=2. 对 n + 1 n+1 n+1 个顶点的多面体的情况 , , , 我们考虑其中某两个相邻顶点 , , , 观察其合并成一个顶点的过程 , , , 发现当两个相邻顶点存在长度为 2 2 2 的连通路径的时候 , , , 情形稍有不同 , , , 故分为以下两种情况讨论 : : :
情况 1 : 1: 1: 两顶点之间不存在长度为 2 2 2 的连通路径 . . .
此时合并以后
,
,
, 边的数量减少
1
1
1 条
,
,
, 顶点少
1
1
1 个
,
,
, 面的数量不变
,
,
, 即
V
n
+
1
=
V
n
+
1
,
E
n
+
1
=
E
n
+
1
,
F
n
+
1
=
F
n
V_{n + 1}= V_n+1,E_{n + 1} = E_n + 1,F_{n + 1} = F_n
Vn+1=Vn+1,En+1=En+1,Fn+1=Fn
于是
,
,
, 根据归纳假设
,
,
,
V
n
+
1
−
E
n
+
1
+
F
n
+
1
=
V
n
+
1
−
(
E
n
+
1
)
+
F
n
=
V
n
−
E
n
+
F
n
=
2
V_{n + 1} - E_{n + 1} + F_{n + 1} = V_n + 1 - (E_n + 1) + F_n = V_n - E_n + F_n = 2
Vn+1−En+1+Fn+1=Vn+1−(En+1)+Fn=Vn−En+Fn=2
对
n
+
1
n + 1
n+1 顶点多面体
,
,
, 原命题成立
.
.
.
情况 2 : 2: 2: 两顶点存在长度为 2 2 2 的连通路径 . . .
此时
,
,
, 顶点和边的减少情况同上
,
,
, 但是
,
,
, 每有一条长度为
2
2
2 的连通路径
,
,
, 与原来长度为
1
1
1 的直接连通组成一个三角形的面
,
,
, 这个面也会消失
,
,
, 同时连通路径的两条边合并为一条
,
,
, 因此面和边的数量也各自要减
1
1
1
.
.
. 于是
,
,
, 对存在m个这样的连通路径的情况
,
,
,
V
n
+
1
=
V
n
+
1
,
E
n
+
1
=
E
n
+
1
+
m
,
F
n
+
1
=
F
n
+
m
V_{n + 1} = V_n+ 1 , E_{n + 1} = E_n+1+m , F_{n + 1}= F_n + m
Vn+1=Vn+1,En+1=En+1+m,Fn+1=Fn+m
于是
,
,
,
V
n
+
1
−
E
n
+
1
+
F
n
+
1
=
V
n
+
1
−
(
E
n
+
1
+
m
)
+
F
n
+
m
=
V
n
−
E
n
+
F
n
=
2
V_{n + 1} - E_{n + 1} + F_{n + 1} = V_n + 1 - (E_n + 1 + m) + F_n + m = V_n - E_n + F_n = 2
Vn+1−En+1+Fn+1=Vn+1−(En+1+m)+Fn+m=Vn−En+Fn=2
对
n
+
1
n + 1
n+1 顶点多面体
,
,
, 原命题成立
.
.
.
根据数学归纳法 , , , 原命题得证 . . .