欧拉简单多面体定理

该博客详细介绍了欧拉定理在三维空间中关于简单多面体的应用,即V-E+F=2。通过数学归纳法证明了无论简单多面体的顶点数为多少,这一等式始终成立。文章首先以四面体为例验证定理,然后假设定理对n个顶点的多面体成立,并分别讨论当相邻顶点合并时不存在和存在长度为2的连通路径两种情况,最终得出对n+1个顶点的多面体,定理依然成立的结论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载于 : : : 这里

简单多面体欧拉定理 : : : 对于简单多面体 , , , 其各维对象数总满足一定的数学关系 , , , 在三维空间中设其顶点 , , , 边和面的数量分别为 V , E , F V,E,F V,E,F 则欧拉定理可表示为 : : :

V − E + F = 2 V - E + F = 2 VE+F=2

对多面体的顶点数n进行数学归纳 : : :

  1. 顶点最少的多面体为四面体 , , , n = 4 n = 4 n=4 ( ( ( 三棱锥 ) , ), ), 验证得 V − E + F = 4 − 6 + 4 = 2 , V-E+F=4-6+4=2, VE+F=46+4=2, 命题成立 . . .

  2. 假设定理对 n n n 个顶点的简单多面体成立 , , , V n − E n + F n = 2. V_n-E_n+F_n=2. VnEn+Fn=2. n + 1 n+1 n+1 个顶点的多面体的情况 , , , 我们考虑其中某两个相邻顶点 , , , 观察其合并成一个顶点的过程 , , , 发现当两个相邻顶点存在长度为 2 2 2 的连通路径的时候 , , , 情形稍有不同 , , , 故分为以下两种情况讨论 : : :

情况 1 : 1: 1: 两顶点之间不存在长度为 2 2 2 的连通路径 . . .

此时合并以后 , , , 边的数量减少 1 1 1 , , , 顶点少 1 1 1 , , , 面的数量不变 , , ,
V n + 1 = V n + 1 , E n + 1 = E n + 1 , F n + 1 = F n V_{n + 1}= V_n+1,E_{n + 1} = E_n + 1,F_{n + 1} = F_n Vn+1=Vn+1,En+1=En+1,Fn+1=Fn
于是 , , , 根据归纳假设 , , ,
V n + 1 − E n + 1 + F n + 1 = V n + 1 − ( E n + 1 ) + F n = V n − E n + F n = 2 V_{n + 1} - E_{n + 1} + F_{n + 1} = V_n + 1 - (E_n + 1) + F_n = V_n - E_n + F_n = 2 Vn+1En+1+Fn+1=Vn+1(En+1)+Fn=VnEn+Fn=2
n + 1 n + 1 n+1 顶点多面体 , , , 原命题成立 . . .

情况 2 : 2: 2: 两顶点存在长度为 2 2 2 的连通路径 . . .

此时 , , , 顶点和边的减少情况同上 , , , 但是 , , , 每有一条长度为 2 2 2 的连通路径 , , , 与原来长度为 1 1 1 的直接连通组成一个三角形的面 , , , 这个面也会消失 , , , 同时连通路径的两条边合并为一条 , , , 因此面和边的数量也各自要减 1 1 1 . . . 于是 , , , 对存在m个这样的连通路径的情况 , , ,
V n + 1 = V n + 1 , E n + 1 = E n + 1 + m , F n + 1 = F n + m V_{n + 1} = V_n+ 1 , E_{n + 1} = E_n+1+m , F_{n + 1}= F_n + m Vn+1=Vn+1,En+1=En+1+m,Fn+1=Fn+m
于是 , , ,
V n + 1 − E n + 1 + F n + 1 = V n + 1 − ( E n + 1 + m ) + F n + m = V n − E n + F n = 2 V_{n + 1} - E_{n + 1} + F_{n + 1} = V_n + 1 - (E_n + 1 + m) + F_n + m = V_n - E_n + F_n = 2 Vn+1En+1+Fn+1=Vn+1(En+1+m)+Fn+m=VnEn+Fn=2
n + 1 n + 1 n+1 顶点多面体 , , , 原命题成立 . . .

根据数学归纳法 , , , 原命题得证 . . .

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值