坦白而言,这一次学习确实比原来更深入不少,对于算法的内容和大致执行的流程也有了一个更深入的了解;
Bellman-Ford算法也是最短路径生成算法,但是其和迪杰斯特拉算法不一样的是可以进行负权值路径的判别。而迪杰斯特拉算法所使用的前提条件之一就是不能出现负权值路径。
其实从这个算法收获的有两个东西:
1.算法本身的思路,和迪杰斯特拉不同;
2.负权值路径和负权值回路会出现什么样的问题;
Bellman-Ford算法思路也很简单,对于N个点,进行N次循环,每次循环依次更新路径。
在更新路径的操作上,和迪杰斯特拉算法大同小异,但是不同于迪杰斯特拉算法,他不是选取最小的边进行选择,而是根据每一条边,依次对Distence数组进行更新,所以会访问很多访问过的点,借此重复不遗漏的更新距离数组,也就是规划起点到当前访问的相邻点的问题。思路很简单,也很好理解,但是有一个疑惑就是N次循环是怎么规定出来的,这个存疑,书上证明没看太懂,但是当出现负权值环的时候,确实可以通过再次更新距离数组进行判断;
对于负权值回路,是不可能有最短路径的。原因就是当经过一个负权值回路环的时候,这条路径到达的点虽然仍相同,但是权值经过每次迭代必然下降,所以无论是迪杰斯特拉还是Bellman-Ford算法都没法解决这个问题。同时,Bellman-Ford算法判定条件之一就是经过足够次迭代,仍然无法满足更新权值存在,此时,必有负权值回路存在。
大致代码如下所示:
前半部分为循环嵌套,目的是更新路径;
后半部分为负权值环的判断;
struct Node{
int v,dis;
};
vector<Node> Adj[MAXV];
int n;
int d[MAXV];
bool Bellman(int s){
fill(d,d+MAXV,INF);
d[s]=0;
for(int i=0;i<n-1;i++){
for(int u=0;u<n;u++){
for(int j=0;j<Adj[u].size();j++){
int v=Adj[u][j].v;
int dis=Adj[u][j].dis;
if(d[u]+dis<d[v]){
d[v]=d[u]+dis;
}
}
}
}
for(int u=0;u<n;u++){
for(int j=0;j<Adj[u].size();j++){
int v=Adj[u][j].v;
int dis=Adj[u][j].dis;
if(d[u]+dis<d[v]){
return false;
}
}
}
return true;
}