自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(170)
  • 收藏
  • 关注

原创 【Python】数组操作:数组切片——省略号和切片|(1)

用通俗易懂的方式来讲解省略号(...)在数组切片中的作用,并将其与冒号()进行区分。冒号:主要用于明确指定某个维度上要选择所有元素,需要对每个维度都进行明确的指定。如果维度较多,使用冒号会使代码变得冗长。省略号:用于自动选择所有剩余的维度,它可以简化代码,尤其是在处理高维数组时,避免了对每个维度都写冒号的麻烦。例如,对于一个四维数组arr4d,如果我们想选择第一个元素对应的三维数组的所有元素,使用冒号的话需要写,而使用省略号则可以简洁地写成。

2025-02-05 16:42:09 730

原创 【AI+Bio系列】小白向·蛋白质结构预测到底在做什么?

本人计科专业本科生,并非生物专业出生,主要利用人工智能技术解决生物信息领域问题,因此,需要涉及一些生物信息方面的基础知识,希望能帮助到你,如果错误,恳请指正!接下来我会用一条PDBID为1F88的蛋白质为例子,来解释什么叫蛋白质接触矩阵。(以下简称 PDB)是当今全世界最具公信力的蛋白质数据库之一,每一条蛋白质都有唯一标识通过 前面的介绍,我们对蛋白质这个三维结构有了一些了解。现在我们对最重要的对蛋白质最重要的两个维度的表示进行更深层次的讲解。蛋白质的1级结构指的是其序列。在PDB中可以下到。

2025-01-10 18:09:06 1266

原创 【科研小白系列】从0开始配置服务器环境:Miniconda(超详细)

今天是来到一个全新的实验室单位实习的第五天了,回想起来到实验室的第一天,老师给我在服务器上开了个新用户,这意味着我又需要在服务器终端重新配置所有的环境。借着这个机会,我正好可以继续整理出一个比较完整的适合小白的实验室入门教程了。同时在这个实习过程中,我也学到了很多东西,比如工具的正确使用、新的终端工具、调试方法等等。也会在这期之后继续更新。碎碎念,其实在第一天连接服务器的时候,我遇到了很多问题,比如在本地windows下怎么都连不上服务器,最终换成苹果系统居然神奇的好了。

2025-01-10 17:24:34 1163

原创 【科研小白系列】使用VScode连接远程服务器编码训练模型,真的太香了!!

这篇文章,详细介绍了如何使用工具连接远程服务器,上传代码,打开远程终端进行运行。但是最近遇到了一个问题,一些Github上的项目本身就是在Linux下开发的,这就对于惯用Windows开发的我这个小白来说,非常不友好。对PyCharm热衷的我,终于要下Vscode了…那么本期教程,让我们从头开始,学习如何使用Vscode连接服务器,编码和调试!!

2024-11-27 16:27:34 1349 3

原创 【深度学习】论文笔记:空间变换网络(Spatial Transformer Networks)

博主简介:努力学习的22级计算机科学与技术本科生一枚🌸博主主页:往期回顾:每日一言🌼:今天不想跑,所以才去跑,这才是长距离者的思维。——村上春树(Spatial Transformer Networks,简称STN)是一种模型,旨在。STN是由Max Jaderberg等人在2015年提出的,其核心思想是在传统的卷积神经网络(CNN)中嵌入一个可学习的模块,该模块能够显式地对输入图像进行空间变换,从而使得网络能够对输入图像的几何变形具有更好的适应性。STN的引入使得网络能够。

2024-11-04 19:10:54 2165 4

原创 【机器学习】有监督学习·由浅入深讲解分类算法·Fisher算法讲解

在前面的博客中,我们也讲解过分类算法,它的另外一个名字又叫做逻辑回归。🔗【吴恩达·机器学习】第三章:分类任务:逻辑回归模型(交叉熵损失函数、决策边界、过拟合、正则化)在那篇博客中,我们了解到简单的线性回归模型+阈值分割无法完成所有的分类任务,但是在回归模型的基础上引入逻辑函数,将其线性转换为非线性的逻辑回归模型,则可以很好的解决这个问题。事实上,逻辑回归只是解决分类问题其中一种方法,在此篇文章,我们将系统的了解分类问题,且就其中一种线性分类算法——Fisher 进行详细的讲解。➢问题的定义:设有满足独立同

2024-10-28 20:03:40 1454 2

原创 深入浅出:深度学习模型部署全流程详解

在我大二,参与了一个较为完整的机器学习的目标检测项目,在这个过程中,我陆陆续续写了以下博客,目的是记录我在这个过程中所学习到的知识和技术。🌸部署和系统开发系列文章QT C++实现点击按键弹出窗口并显示图片/视频|多窗口应用程序的设计和开发QT C++实战:实现用户登录页面及多个界面跳转QT C++实践|超详细数据库的连接和增删改查操作|附源码【yolov8部署实战】VS2019+OpenCV环境部署yolov8目标检测模型|含详细注释源码。

2024-10-22 15:04:14 3641 1

原创 【论文精读】PSAD:小样本部件分割揭示工业异常检测的合成逻辑

逻辑异常(LA)是指违反潜在逻辑约束的数据,例如图像中组件的数量、排列或组成(the quantity, arrangement, or composition of components)。准确检测此类异常需要模型通过分割对各种组件类型进行推理。然而,语义分割的像素级标注的整理既耗时又昂贵。尽管已有一些少样本或无监督的共部分分割算法,但它们在工业对象图像上往往失败。这些图像中的组件具有相似的纹理和形状,精确区分具有挑战性。在本研究中,我们引入了一种用于 LA 检测的新型组件分割模型,该模型利用了少量标记样

2024-10-17 16:11:11 1244

原创 【机器学习】深入浅出讲解贝叶斯分类算法

贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素贝叶斯(Naive Bayes)分类是贝叶斯分类中最简单,也是常见的一种分类方法。一些很常见的分类算法(如:KNN,逻辑回归,决策树),这些模型学习目的是学习输出YYY和特征XXX之间的关系。它们属于判别方法 。但这篇文章所讲的贝叶斯分类算法,它是基于概率论的生成方法,直接找出输出YYY和输入特征XXX之间的联合分布P(X,Y)P(X, Y)P(X,Y) ,进而根据贝叶斯公式P(Y∣X)=P(X,Y)P(X)P(Y\mi

2024-10-13 16:02:34 3396 1

原创 【论文精读】Few-Shot Anomaly Detection via Category-Agnostic Registration Learning全类别通用!提升11%!CAReg:超越FSAD

来自上海交通大学 MediaBrain 团队和上海人工智能实验室智慧医疗团队等的研究人员提出了一种基于配准的少样本异常检测框架RegAD,本篇论文在RegAD基础上提出了一种新颖的少样本异常检测方法,称为CAReg,通过学习通用的跨类别配准技术,仅使用每个类别的正常图像进行训练,从而实现了对新类别的无需微调的模型应用,提高了异常检测的准确性和效率。

2024-10-06 19:46:32 988

原创 【科研小白系列】如何精读论文——总结李沐老师

最近在做缺陷检测相关的项目,和以前做的一些项目不一样,并没有直接开源的代码可以用(Like Yolo, 只用调调参,准备一下数据集然后直接训练和使用)。也许这才是真正的科研吧,并没有现成的可参考完全适用的方案。需要自己一步一步搜集论文、看开源代码,慢慢想出一个适合自己需求的方法。这对我来说是一个挑战,找到的开源代码你不仅需要读懂整个开源代码,就算后续用上自己的数据集进行训练,效果也不一定如意(这是我目前的情况),于是我需要修改源码,修改一个适合我需求和数据集的代码和模型。

2024-09-23 09:27:46 683

原创 【科研小白系列】使用screen创建虚拟终端,实现本地关机后服务器仍然跑模型

最近连上实验室服务器跑模型了,但是发现这样有一个很鸡肋的点就是电脑不能关机,还得一直插着网线保持和服务器的连接才行。之后同学告诉我说,有一个可以创建虚拟终端的方法,这样就算本地电脑关机,服务器仍然能够继续跑模型。这篇博客就是用来介绍在linux系统下的screen命令来实现这个功能。背景:系统管理员经常需要SSH 或者telent 远程登录到Linux 服务器,经常运行一些需要很长时间才能完成的任务,比如系统备份、ftp 传输等等。

2024-09-08 12:41:46 1311 3

原创 【科研小白系列】模型训练已经停止(强行中断)了,可GPU不释放显存,如何解决?

最近好不容易用服务器把模型跑起来了,美滋滋地看他一轮一轮训练,感觉应该没啥问题,想着一个晚上训练完肯定没问题!结果第二条早上来一看:main()这不是说我显存不够了吗!使用nvidia-smi命令查看服务器显卡使用情况:没错,我用的就是0号显卡,难道是实验室师兄师姐在训练模型?不应该呀!这个显存占用量和我模型训练的显存占用量极为相似,何况师兄师姐他们训练模型之前肯定会查看显卡的使用情况的!

2024-09-05 09:22:18 1116

原创 【科研小白系列】如何远程连接实验室服务器跑代码?

最近在做缺陷检测相关的项目,可谓一波三折,第一次读英文论文,第一次自己+GPT看懂整个开源代码。就在自己准备好数据集、改好代码后,准备信息慢慢地跑模型时,却…我的8G显存不够用!!!好吧,当初信心满满拿着奖学金一举拿下这台新电脑,罢工了…ok fine,我便只好用实验室服务器了,这也是之后做科研不可或缺的一步吧。至此在连接服务器时也遇到一些坑,于是把这次经历写成一个教程,希望能帮小伙伴避坑!!(ง •_•)ง。

2024-09-03 21:10:29 2428 2

原创 【计算机系统架构】从0开始构建一台现代计算机|时序逻辑、主存储器|第3章

一言以蔽之:在构建了计算机的 ALU 之后,本 Modulation 将转向构建计算机的主存储器单元,也称为随机存取存储器或RAM。这项工作将自下而上逐步完成,从初级触发器门到一位寄存器,再到 n 位寄存器,直至一系列 RAM 芯片。与基于组合逻辑的计算机处理芯片不同,计算机的存储逻辑需要基于时钟的顺序逻辑(时序逻辑电路)。我们将首先概述这一理论背景,然后构建我们的内存芯片组。关键概念:组合逻辑与时序逻辑、时钟与周期、触发器、寄存器、RAM 单元、计数器。

2024-08-28 18:42:06 1592

原创 【Hadoop】知识点总结、大学期末复习

Map:每次对一行数据进行操作Reduce:对具有同一个key的所有k-v进行操作单选和多选略,已上传到资源。

2024-08-22 11:13:25 1018 1

原创 【算法设计与分析】知识点总结、大学期末复习

算法(Algorithm)算法是解决问题的一种方法or一种过程具体组成: 若干指令的有穷序列。有以下四个性质是算法解决问题的对象,即外部提供的量作为算法的输出算法解决问题的结果,即算法至少输出一个值。每条指令的含义是没有歧义的(即我们需要的是一个确定的明确的无歧义的解决方法)。每条指令执行的次数、时间是有限的。即在有限时间内,这个问题肯定有解。数值概率算法:通过多次随机试验,得到近似解,适用于复杂问题。舍伍德思想:通过随机化方法解决特定问题,逐步逼近最优解。拉斯维加斯算法。

2024-08-22 11:12:52 11464 3

原创 【论文精读】上交大、上海人工智能实验室等提出基于配准的少样本异常检测框架超详细解读(翻译+精读)

这篇文章探讨了少样本缺陷检测(few-shot anomaly detection :FSAD),这是一种实用但尚未被研究的异常检测(AD),少样本意味着在训练中只为每个类别提供有限数量的正常图像。现有的少样本异常检测的研究主要使用的是一类别一模型(the one-model-per-catego )学习范式,而类别间的共性尚未被探索。受人类探测异常的启发,将有问题的图像与正常图像进行比较,我们在这里利用配准(registration),这是一种固有可跨类别泛化的。

2024-08-15 15:36:58 1010 1

原创 【计算机系统架构】从0开始构建一台现代计算机|二进制、布尔运算和ALU|第2章

着手构建一个加法器系列–专为数字加法而设计的芯片。然后,我们将向前迈出一大步,构建一个算术逻辑单元。算术逻辑单元设计用于执行一整套算术和逻辑运算,是计算机的计算大脑。在本课程的后半部,我们将使用 ALU 作为核心芯片,并在此基础上构建计算机的中央处理器(CPU)。由于所有这些芯片都以二进制数(0 和 1)为运算单位,因此我们将从二进制运算的总体概述开始本模块的学习,然后再深入学习 ALU 的构建。

2024-07-22 21:19:01 1354

原创 【计算机系统架构】从0开始构建一台现代计算机|布尔代数和基础逻辑门|第一章

首先,我们将简要介绍布尔代数,并学习如何使用逻辑门物理地实现布尔函数。然后,我们将学习如何使用硬件描述语言(HDL)指定逻辑门和芯片,以及如何使用硬件模拟器模拟由此产生的芯片规格的行为。这些背景知识将为项目 1 做好准备,在项目 1 中,您将构建、模拟和测试 15 个基本逻辑门。您在本模块中构建的芯片组稍后将用于构建计算机的算术逻辑单元(ALU)和内存系统。这将分别在模块 2 和模块 3 中完成。简而言之,NAND与非门是给定的,我们要依次从上到下构建芯片。

2024-07-20 15:51:44 1479

原创 【计算机系统架构】从0开始构建一台现代计算机|导言

从 Nand 到俄罗斯方块之旅.它是从0 到1从最基础的与非门开始,从硬件到软件讲清楚计算机的架构原理以及软件的运行原理。"从Nand 到俄罗斯方块 “课程将带您踏上一段自定进度的奇妙探索之旅,从布尔代数和初级逻辑门,到构建中央处理器、内存系统和硬件平台,直至一台可以运行任何程序的通用计算机。在构建这台计算机的过程中,你将熟悉许多重要的硬件抽象概念,并亲手实现它们。但最重要的是,你将享受到从头开始构建一个复杂而实用的系统所带来的巨大快感。看这门课时间也不是很长,于是正准备暑期学完。

2024-07-20 15:51:11 936 1

原创 【BFS算法】广度搜索·由起点开始逐层向周围扩散求得最短路径(算法框架+题目)

深度优先搜索是DFS(Depth Frst Search),其实就是前面所讲过的回溯算法,它的特点和它的名字一样,首先在一条路径上不断往下(深度)遍历,获得答案之后再返回,再继续往下遍历。这也是递归的思想,所以这也是为什么回溯算法通常都是用递归来写,而下面的BFS由于不是这种思路从而没有用递归。广度优先算法(Breath First Search)其实和深度优先算法是一对兄弟,因为它们的解空间都是树形解空间,并且都是在求解过程中动态生成树形解空间。

2024-06-19 09:57:57 1508

原创 【大数据·hadoop】项目实践:IDEA实现WordCount词频统计项目

我们知道,在hdfs分布式系统中,MapReduce这部分程序是需要用户自己开发,我们在ubuntu上安装idea也是为了开发wordcount所需的Map和Reduce程序,最后打包,上传到hdfs上。在ubuntu上安装idea的教程我参考的是这篇。

2024-06-11 20:12:19 2212 1

原创 【计算机视觉】数字图像处理基础:以像素为单位的图像基本运算(点运算、代数运算、逻辑运算、几何运算、插值)

在上篇文章中,我们对什么是数字图像、以及数字图像的组成(离散的像素点)进行了讲解🔗。我们知道,数字图像其实就是像素点组成的二维矩阵。本节我们要讲的就是基于这个二维矩阵进行一些数学上的基本运算(本质就是就是矩阵的计算——线性代数),对图像进行处理,这些基本运算也是数字图像处理的基础和基本算法,本节我们将介绍这些基本算法。分别有以下几类Tips: 我们在进行下面的基本运算时,都是将像素值进行归一化到[0, 1]的取值范围的,方便变换和计算。在对应变换的时候也需要注意这点,避免产生误解。

2024-06-08 16:55:55 4416

原创 【回溯算法】N皇后问题·构建多叉决策树,遍历决策节点,做出决策(边),收集答案

在这篇博客,其实已经对回溯算法的思想、做题框架做出了详细的阐述。这篇文章我们再从N皇后问题,加深我们对其理解。这里在简单再次对其进行概述:回溯算法的核心就是构建和遍历一棵【多叉决策树】🪧函数就相当于游走在这颗多叉决策树上的一个指针,它来决策节点,并且做出决策。进入backtrack函数,就以为着我们进入了一个决策节点,也意味着我们需要思考上面所示的三个问题。其核心就是 for 循环里面的递归,

2024-06-07 13:20:42 1173 1

原创 【贪心算法·哈夫曼编码问题】从定长编码和不定长编码讲到最小化带权路径长度和

原问题有n个节点,通过贪心选择合并两个频率最低节点为一个新节点,将新节点加入到节点集合,进行n-1个节点的最优编码二叉树构建,可以看到,首先我们要承认使用贪心的前提是:问题具有贪心选择性质,即可以通过局部最优进而得到全部最优(并不是所有问题都具有贪心选择性质);而由局部最优得到全局最优其实是一个自顶向下的思想过程:通过每次当前的贪心选择,来缩小问题规模,从而一步一步得到全局最优解。

2024-06-03 17:26:16 2860

原创 【C++】浅论(cin和cout)的解锁、缓冲区的理解、C&C++输入方法汇总和详解

首先在C语言中scanf用来格式化读取各种基本数据(但是遇到空比字符则视为读入的终止标志而停止,所以不可用来读取带有空格的字符串)getchar()和fgets()用来读取字符(可读白字符:如空格、换行),区别仅在于getchar()默认是stdin输入流,不用显示传参在读取字符串时(C语言格式的字符数组char []),使用fgets读入,其会读取到换行符\0便终止读取,并把\0算入字符串的一个字符加入到字符串末尾,并且自动在字符串末尾加上\0。在C++中cin可以用来读取各种基本数据,和。

2024-05-27 15:00:17 2275 1

原创 Python 人工智能实战| 基于K-means算法的模式聚类进行数字图像处理

1、理解K-means算法的基本原理和图像颜色聚类的关键要素;2、学习使用Python编程语言和机器学习开发工具包(scikit-learn)构建K-means模型;3、编程实现基于K-means的图像颜色聚类程序,并分析实验结果。二、概要设计1.Kmeans——一种无监督机器学习的聚类算法基本原理:在不给出数据类别标签而直接给出样本数据情况下,该算法首先需要确定结果要把样本聚成k类。2.本次实验需要完成的聚类任务介绍:用K-means算法实现图像颜色聚类。

2024-05-23 10:07:26 1121 1

原创 【计算机视觉】数字图像处理基础知识:模拟和数字图像、采样量化、像素的基本关系、灰度直方图、图像的分类

图像(image):根据第二点的不同,我们可以将图像分为:模拟图像、数字图像模拟图像的成像过程和结果记录是基于化学反应的,如传统照相方法所用到的“胶片”就是一种物理介质,这个过程涉及到光敏材料对光的响应,是一种!。这种成像过程和记录结果是连续的,没有固定的分辨率限制,可以达到非常精细的水平。对模拟图像的处理和编辑通常需要用到。,成像结果就是离散的。它是基于传感器的。由下图可以看到,数字图像是由模拟图像得到的。它以像素为最小单位存储在计算机等数字电路中,这个过程也称为:图像的数字化。

2024-05-22 15:01:36 7030 1

原创 Python 人工智能实战| 基于多层神经网络的模式分类识别MINIST手写数字

人工智能实验,了解一下python里sklearn这个机器学习库,当然神经网络部分都是直接封装好的,直接调用就好,看看如何在应用方面,调用库来训练一个模型,来进行预测。

2024-05-17 08:45:37 1262

原创 【大数据·Hadoop】从词频统计由浅入深介绍MapReduce分布式计算的设计思想和原理

MapReduce的算法核心思想是:分治学过算法的同学应该会学到分治算法,所谓分治,就是把原问题分解为规模更小的问题,进行处理,最后将这些子问题的结果合并,就可以得到原问题的解。MapReduce这种分布式计算框架的核心就是:分治。上图是MapReduce的处理流程图,可以看到,MapReduce的整个过程主要分为:输入:来自存储在hdfs上的文件block进行分块(split)后,并且进行读取数据处理的分块数据的键值对(key-value)形式。

2024-05-11 19:27:04 2576 3

原创 【大数据·hadoop】在hdfs上运行shell基本常用命令

在Hadoop生态系统中,supergroup 是一个默认的用户组,通常与HDFS的超级用户(即 Hadoop 的管理员账户,类似于 Unix 系统中的 root 用户)关联。超级用户和属于 supergroup 组的用户通常有着对HDFS上所有文件和目录的全权限,这包括读取、写入和执行权限。

2024-05-11 17:09:39 4324 1

原创 由树形解空间入手,深入分析回溯、动态规划、分治算法的共同点和不同点

回溯、动态规划、分治可以认为是一类算法,其实不用严格的将其分为太开,它们的共同点是解空间都是一棵多叉树,获得解也是在这个多叉树上进行操作。只需要从这三个视角对其有一个直观认识即可而各个算法的关键以及区分点也就是❓如何去构建这样一给解空间(一颗多叉树)——递归函数的定义❓这个多叉树的节点含义是什么❓如何基于这个解空间获得问题的答案。

2024-05-08 16:49:37 979

原创 【机器学习系统的构建】从模型开发的过程讲清楚K-Fold 交叉验证 (Cross-Validation)的原理和应用

综上,我们基本就弄清楚了各个各个数据集的作用,在这里我们总结一下:在一个确定的模型结构上,基于训练集的数据,用相应模型的训练方法(比如反向传播和梯度下降)进行模型的训练——模型的训练对训练好的、不同结构的模型进行性能的评估,进行选择,选择一个性能最好的(这里的最好,是只这个模型是基于训练集、验证集表现的最好的,并不代表它的泛化能力就一定强)——模型的选择和超参数调整独立于模型开发过程,在最终由前两个步骤推出来一个模型后,对这个模型的泛化能力进行客观公众的评估。——在最终选择好模型后,进行模型性能评估。

2024-05-07 21:39:47 1442 1

原创 集成学习算法:AdaBoost原理详解以及基于adaboost的图像二分类代码实现

AdaBoost,是英文"Adaptive Boosting"(自适应增强)的缩写,由Yoav Freund和Robert Schapire在1995年提出。AdaBoost(Adaptive Boosting)是一种集成学习算法集成学习算法其实不能理解为一种具体算法(像knn、kmeans这样十分具体的算法),它其实是一种算法策略、算法框架。它的核心是在于,将多个弱学习器(模型)结合(集成),从而得到一个更强大的模型。提高整体的性能和稳定性。💡说的好像很轻松,“结合”,那么具体如何结合呢?

2024-05-05 19:16:43 10179 11

原创 Python 人工智能实战| KNN算法进行分类和回归

在本次实验中,我们使用了一个包含人的身高©、体重(kg)和性别(male/female)的数据集。这个数据集被分为训练集和测试集,训练集用于训练KNN模型,而测试集用于评估模型的性能。为了探究数据量对模型性能的影响,我们尝试了增加训练集和测试集的数据量。此外,我们还考虑了不同的K值对模型预测准确率的影响。数据集的具体介绍如下:①基于身高和体重的性别预测:训练数据集包含多个样本,每个样本有两个属性:身高©和体重(kg),以及一个类别标签:性别(male/female)。

2024-04-29 11:28:57 2113

原创 将Python机器学习模型集成到C++ Qt客户端应用程序中|Qt调用python详解

有几个不同的选项可以将你的Python机器学习模型集成到你的C++ Qt客户端应用程序中。通过嵌入式Python部署方法,目标机器(用户的机器)无需单独安装Python。这是因为所有必要的Python组件都应该被包含在你的应用程序中,作为该应用程序的一部分进行分发。这意味着Python解释器和所有必要的库、模块及其他依赖都被静态链接到应用程序或以其他形式捆绑在一起,用户不需要执行额外的安装步骤。

2024-04-21 16:57:13 2591

原创 Python爬虫技术快速入门

本文介绍了Python爬虫技术的基础知识和常用库。通过发送HTTP请求、解析HTML内容以及处理JavaScript渲染的页面,我们可以提取出互联网上的有用信息。对于更复杂的爬虫需求,可以使用Scrapy框架来构建高度定制化的爬虫程序。希望本文对你入门Python爬虫技术有所帮助!文末推荐。

2024-04-09 07:02:01 1371

原创 【机器学习·浙江大学】机器学习概述、支持向量机SVM(线性模型)

支持向量机就是最大化margin的方法将直线上下移动所穿过的向量称为:支持向量(support vectors)——为什么呢?因为我们从上文讲到的确定最终直线的方法来看,最大化距离、确定直线,只和这几个穿过的支持向量有关(这也是为什么SVM适合小样本问题)X→1y1X1​y1​X→2y2X2​y2​X→3y3X3​y3​X→NyNXN​yN​X→X是特征向量;

2024-04-07 21:41:14 1616

原创 2023年度总结:允许迷茫,破除迷茫;专注自身,把握当下

我该如何来形容我这几年呢,像一只从从鸟巢中破壳,刚学会飞行的小鸟,以为能展翅翱翔至高空,却不慎跌入湖海,2022年的我,在湖水中拼命展翅,学会了游泳,却身心俱疲,但好在有目标有毅力。2023年的我,似乎仍然在湖海中迷茫漂泊,好在自己及时抓住了稻草,奋起直上游到了岸边,上岸的小鸟有了更清晰的目标和路线,但是她明白,想飞往更高的天空不是学会振翅就行的…在2023这一整年,我不想说我学到了多少计算机的专业知识,有多大的学业成就,我觉得我成长的不仅是学习,还有更多方面,下面是我的一些感悟。

2024-04-06 21:05:48 1871 27

Hadoop课题笔记(原创

Hadoop课题笔记(原创

2024-08-22

Hadoop复习习题(旧

Hadoop复习习题(旧

2024-08-22

Hadoop期末复习习题

Hadoop期末复习习题

2024-08-22

Hadoop-HDFS常用命令

Hadoop-HDFS常用命令

2024-08-22

【Golang项目实战】手把手教你写一个备忘录程序-源码02

这个教程将手把手地教你如何用Golang编写一个备忘录程序,并提供完整的源代码。备忘录程序可以帮助你记录重要的事项、任务和提醒事项,以确保你能够及时完成它们。在这个教程中,你将学习如何使用Golang创建一个命令行应用程序,如何使用文件系统存储数据,以及如何实现基本的CRUD(创建、读取、更新、删除)操作。通过这个实战项目,你将学到Golang的基础语法和常用库,以及如何将它们应用到实际项目中。在完成这个项目后,你将具备开发简单命令行应用程序的能力,这对于学习Golang编程或开发其他类型的应用程序都会有所帮助。

2023-05-02

【Golang项目实战】手把手教你写一个备忘录程序-源码01

这个教程将手把手地教你如何用Golang编写一个备忘录程序,并提供完整的源代码。备忘录程序可以帮助你记录重要的事项、任务和提醒事项,以确保你能够及时完成它们。在这个教程中,你将学习如何使用Golang创建一个命令行应用程序,如何使用文件系统存储数据,以及如何实现基本的CRUD(创建、读取、更新、删除)操作。通过这个实战项目,你将学到Golang的基础语法和常用库,以及如何将它们应用到实际项目中。在完成这个项目后,你将具备开发简单命令行应用程序的能力,这对于学习Golang编程或开发其他类型的应用程序都会有所帮助。

2023-05-02

高等数学A:多元函数微分学及其应用重点知识思维导图(考前快速复习版)

高等数学A:多元函数微分学及其应用重点知识思维导图(考前快速复习版) 1.偏导数 2.全微分 3.多元复合函数的微分法 4.偏导数的几何应用 5.多元函数的极值 6.方向导数和梯度

2023-04-13

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除