论文阅读笔记(十一)——Mobilenet-SSDv2: An Improved Object Detection Model for Embedded Systems
前言
太难了…昨晚强行过上了美国时间,在截稿时间上反复横跳,前阵子又去打美赛,呜呜呜呜…我要修仙了
还是赶紧找篇论文看吧…
1 论文简介
1.1 关于文章
论文名称:Mobilenet-SSDv2: An Improved Object Detection Model for Embedded Systems
1.2 关于模型
一个使用mobilenet的目标检测类文章
2 文章正文
2.1 摘要
目标检测在计算机视觉领域中占有重要地位。文献中提出了许多较好的目标检测算法;然而,它们中的大多数都是为了提高检测精度而设计的。因此,降低计算复杂度的要求通常被忽略。为了实现实时性,这些优秀的对象检测器需要使用高端GPU。本文介绍了一种基于Mobilenet-v2的轻量化目标检测模型。所提出的实时目标检测方法可应用于计算资源有限的嵌入式系统中。这是现代自动驾驶辅助系统(ADAS)设计的关键特征之一。此外,我们还将特征金字塔网络(FPN)与所提出的目标检测模型相结合,有效地提高了检测精度和检测稳定性。实验结果表明,所提出的轻量化目标检测模型在VOC数据集中达到75.9%的mAP值。与现有的Mobilenet-SSD检测器相比,该检测器的检测精度提高了3.5%左右。此外,当在Nvidia Jetson AGX Xavier平台上实现时,该检测器处理720p视频流的平均帧数为19帧/秒(FPS)。因此,提出的轻量化目标检测器具有广阔的应用前景。
2.2 Motivation&Contributions
PS: 这一段主要是方便我们以后写Introduction与Related Work
2.2.1 Motivation
总的来说,其实读了这么多篇,基本就是千篇一律,但是可以多学下几种不同的表达,这样有助于以后融合成一个~
在ADAS和自动驾驶汽车的开发中,目标检测是一个必不可少的功能。为了获得鲁棒和准确的目标检测器,许多基于机器学习技术的先进检测算法已经