短除法 求两个正整数的最大公约数和最小公倍数

短除法,又称欧几里得算法,是一种用于求解两个正整数的最大公约数(Greatest Common Divisor,简称GCD)的经典算法。同时,它也可以帮助我们快速计算这两个正整数的最小公倍数(Least Common Multiple,简称LCM)。

下图是一个小案例,帮助你理解短除法的过程:

最大公因数 gcd = 3 x 7 = 21

最小公倍数 lcm = 3 x 7 x 4 x 3 = 252

代码如下:

#include <stdio.h>
void Short_division(int x,int y);
int main(){
	int x,y;
	printf("请输入两个正整数x,y:");
	scanf("%d %d",&x,&y);
	Short_division(x,y);
}
void Short_division(int x,int y){//短除法
	int i=0,j=0,gcf=1,lcm=1;
	int a[100]={0};
	for(i=2;i<=x && i<=y;i++){//从2开始除
		while(x%i==0&&y%i==0){
			printf("%4d",i);
			printf("%4d",x);
			printf("%4d\n",y);
			a[j++]=i;
			x=x/i;//更新x的值
			y=y/i;//更新y的值
			
		}
	}	
	printf("%8d",x);
	printf("%4d\n",y);
	for(i=0;i<j;i++){
		gcf=gcf*a[i];
	}
	lcm=gcf*x*y;//此处x,y为短除后留下的余数
	printf("\n最大公因数 gcf = %d\n",gcf);
	printf("\n最小公倍数 lcm = %d\n",lcm);
	
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值