一、题目描述
输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
示例1:
输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[1,2,3,6,9,8,7,4,5]
示例2:
输入:matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
输出:[1,2,3,4,8,12,11,10,9,5,6,7]
限制:
0 <= matrix.length <= 100
0 <= matrix[i].length <= 100
二、思路分析
注:思路分析中的一些内容和图片参考自力扣各位前辈的题解,感谢他们的无私奉献
思路
根据题目示例 m a t r i x = [ [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] , [ 7 , 8 , 9 ] ] \rm{matrix = [[1,2,3],[4,5,6],[7,8,9]]} matrix=[[1,2,3],[4,5,6],[7,8,9]] 的对应输出 [ 1 , 2 , 3 , 6 , 9 , 8 , 7 , 4 , 5 ] \rm{[1,2,3,6,9,8,7,4,5]} [1,2,3,6,9,8,7,4,5] 可以发现,顺时针打印矩阵的顺序是从左向右、从上向下、从右向左、从下向上循环。因此,考虑设定矩阵的左、上、右、下四个边界,模拟以上矩阵遍历顺序。
算法流程:
①空值处理:当matrix
为空时,直接返回空列表[]
即可
②初始化:矩阵左、右、上、下 四个边界l
、r
、t
、b
,用于打印的结果列表res
③循环打印:从左向右、从上向下、从右向左、从下向上四个方向循环,每个方向打印中做以下三件事(各方向的具体信息见下表)
----根据边界打印,即将元素按顺序添加至列表res
尾部
----边界向内收缩1
(代表已被打印)
----判断是否打印完毕(边界是否相遇),若打印完毕则跳出
④返回值:返回res
即可
案例分析:
复杂度分析:
时间复杂度 O ( M N ) \rm{O(MN)} O(MN):M
、N
分别为矩阵行数和列数
空间复杂度 O ( 1 ) \rm{O(1)} O(1):四个边界l
、r
、t
、b
使用常数大小的额外空间(res
为必须使用的空间)
三、整体代码
整体代码如下
/**
* Note: The returned array must be malloced, assume caller calls free().
*/
int* spiralOrder(int** matrix, int matrixSize, int* matrixColSize, int* returnSize){
if(matrixSize == 0){
*returnSize = 0;
return NULL;
}
*returnSize = matrixSize * (*matrixColSize); //返回数组的元素个数
int* res = (int*)malloc(sizeof(int) * (*returnSize)); //为返回数组分配空间
//初始化各个边界的值,初始化变量x=0代表目前存入返回数组中元素的个数
int left = 0, right = *matrixColSize - 1, top = 0, bottom = matrixSize - 1, x = 0;
while(true){
for(int i = left; i <= right; i++) res[x++] = matrix[top][i]; //从左到右
if(++top > bottom) break; //如果是最后一行,直接退出
for(int i = top; i <= bottom; i++) res[x++] = matrix[i][right]; //从上到下
if(left > --right) break; //如果是最后一列,直接退出
for(int i = right; i >= left; i--) res[x++] = matrix[bottom][i]; //从右到左
if(top > --bottom) break; //如果是最后一行,直接退出
for(int i = bottom; i >= top; i--) res[x++] = matrix[i][left]; //从下到上
if(++left > right) break; //如果是最后一列,直接退出
}
return res;
}
运行,测试通过