本系列文章为浙江大学陈越、何钦铭数据结构学习笔记,前面文章链接如下:
数据结构基础:P1-基本概念
一、题目描述
题目描述: 给定K个整数组成的序列
{
N
1
,
N
2
,
.
.
.
,
N
k
}
\{ {N_1},{N_2},...,{N_k}\}
{N1,N2,...,Nk} ,“连续子列”被定义为
{
N
i
,
N
i
+
1
,
.
.
.
,
N
j
}
\{ {N_i},{N_{i + 1}},...,{N_j}\}
{Ni,Ni+1,...,Nj},其中
1
≤
i
≤
j
≤
K
1 \le i \le j \le K
1≤i≤j≤K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。
本题旨在测试各种不同的算法在各种数据情况下的表现。各组测试数据特点如下:
• 数据1:与样例等价,测试基本正确性;
• 数据2:
1
0
2
10^2
102个随机整数;
• 数据3:
1
0
3
10^3
103个随机整数;
• 数据4:
1
0
4
10^4
104个随机整数;
• 数据5:
1
0
5
10^5
105个随机整数;
输入格式:
输入第1行给出正整数
K
(
≤
100000
)
K (≤100000)
K(≤100000);第2行给出
K
K
K 个整数,其间以空格分隔。
输出格式:
在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。
输入样例:
6
-2 11 -4 13 -5 -2
输出样例:
2
二、代码实现
根据第一章的课程内容,使用4种方法实现,复杂度依次递减。具体实现代码如下:
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
int Max3(int A, int B, int C)
{ /* 返回3个整数中的最大值 */
return A > B ? A > C ? A : C : B > C ? B : C;
}
//1、暴力搜索。算法复杂度:O(N^3)
int MaxSubseqSum1(int A[], int N)
{
int ThisSum, MaxSum = 0;
int i, j, k;
for (i = 0; i < N; i++)
{
for (j = i; j < N; j++)
{
ThisSum = 0;
for (k = i; k <= j; k++)
ThisSum += A[k];
if(ThisSum > MaxSum)
MaxSum = ThisSum;
}
}
return MaxSum;
}
//2、改进暴力搜索。算法复杂度:O(N^2)
int MaxSubseqSum2(int A[], int N)
{
int ThisSum, MaxSum = 0;
int i, j, k;
for (i = 0; i < N; i++)
{
ThisSum = 0;
for (j = i; j < N; j++)
{
ThisSum += A[j];
if (ThisSum > MaxSum)
MaxSum = ThisSum;
}
}
return MaxSum;
}
//3、分而治之。算法复杂度:O(NlogN)
int DivideAndConquer(int List[], int left, int right)
{ /* 分治法求List[left]到List[right]的最大子列和 */
int MaxLeftSum, MaxRightSum; /* 存放左右子问题的解 */
int MaxLeftBorderSum, MaxRightBorderSum; /*存放跨分界线的结果*/
int LeftBorderSum, RightBorderSum;
int center, i;
if (left == right) { /* 递归的终止条件,子列只有1个数字 */
if (List[left] > 0) return List[left];
else return 0;
}
/* 下面是"分"的过程 */
center = (left + right) / 2; /* 找到中分点 */
/* 递归求得两边子列的最大和 */
MaxLeftSum = DivideAndConquer(List, left, center);
MaxRightSum = DivideAndConquer(List, center + 1, right);
/* 下面求跨分界线的最大子列和 */
MaxLeftBorderSum = 0; LeftBorderSum = 0;
for (i = center; i >= left; i--) { /* 从中线向左扫描 */
LeftBorderSum += List[i];
if (LeftBorderSum > MaxLeftBorderSum)
MaxLeftBorderSum = LeftBorderSum;
} /* 左边扫描结束 */
MaxRightBorderSum = 0; RightBorderSum = 0;
for (i = center + 1; i <= right; i++) { /* 从中线向右扫描 */
RightBorderSum += List[i];
if (RightBorderSum > MaxRightBorderSum)
MaxRightBorderSum = RightBorderSum;
} /* 右边扫描结束 */
/* 下面返回"治"的结果 */
return Max3(MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum);
}
int MaxSubseqSum3(int List[], int N)
{ /* 保持与前2种算法相同的函数接口 */
return DivideAndConquer(List, 0, N - 1);
}
//4、在线处理。算法复杂度:O(N)
int MaxSubseqSum4(int A[], int N)
{
int MaxSum = 0, ThisSum = 0;
for (int i = 0; i < N; i++) {
ThisSum += A[i];
if(ThisSum > MaxSum){
MaxSum = ThisSum;
}
else {
if (ThisSum < 0) {
ThisSum = 0;
}
}
}
return MaxSum;
}
int main()
{
int Array[10000];
int n;
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%d", &Array[i]);
}
int res = MaxSubseqSum4(Array, n);
//res = MaxSubseqSum3(Array, n);
//res = MaxSubseqSum2(Array, n);
//res = MaxSubseqSum1(Array, n);
if (res > 0) {
printf("%d\n", res);
}
else {
printf("0\n");
}
return 0;
}
运行,结果正确。