力扣 (LeetCode)542. 01 矩阵(C语言)

一、环境说明

  1. 本文是 leetcode 542题 :01 矩阵,使用c语言实现
  2. 方法一使用广度优先遍历实现。
  3. 方法二使用动态规划实现。
  4. 测试环境:Visual Studio 2019

二、题目说明:

AC

三、代码展示

方法1 广度优先遍历

const int dx[4] = { 1,-1,0,0 };//偏移的坐标值
const int dy[4] = { 0,0,1,-1 };
typedef struct queue {//队列存储坐标
    int x;
    int y;
}queue;
int** updateMatrix(int** mat, int matSize, int* matColSize, int* returnSize, int** returnColumnSizes) {
    int m = matSize, n = matColSize[0];//m行 n列
    *returnSize = m;//行数
    *returnColumnSizes = (int*)calloc(m, sizeof(int));//列数
    for (int i = 0; i < m; i++) {
        returnColumnSizes[0][i] = n;//每一行有n个元素
    }
    //BFS(mat,m,n);
    int** ans = (int**)calloc(m, sizeof(int*));//答案矩阵
    int front = 0, rear = 0;
    queue* q = (queue*)calloc(m * n, sizeof(queue));//队列元素,存储坐标
    for (int i = 0; i < m; i++) {
        ans[i] = (int*)calloc(n, sizeof(int));//每一行申请n个元素
        for (int j = 0; j < n; j++) {
            if (mat[i][j]) {//mat当前元素是1
                ans[i][j] = INT_MAX;//1的距离为INT_MAX
            }
            else {//当前元素是0
                q[rear].x = i;//0的坐标入队
                q[rear++].y = j;
            }
        }
    }
    while (front != rear) {//队列非空
        int x = q[front].x;//出发坐标
        int y = q[front++].y;
        for (int i = 0; i < 4; i++) {//向4个方向遍历
            int new_x = x + dx[i], new_y = y + dy[i];//被遍历到的坐标
            if (new_x >= 0 && new_x < m && new_y >= 0 && new_y < n) {//边界保护
                if (ans[new_x][new_y] > ans[x][y] + 1) {
                    ans[new_x][new_y] = ans[x][y] + 1;//更新距离
                    q[rear].x = new_x;
                    q[rear++].y = new_y;
                }
            }
        }
    }
    return ans;
}

方法2 动态规划

#define Min(a,b) a<b?a:b
int** updateMatrix(int** mat, int matSize, int* matColSize, int* returnSize, int** returnColumnSizes) {
    int m = matSize, n = matColSize[0];//m行 n列
    *returnSize = m;//行数
    *returnColumnSizes = (int*)calloc(m, sizeof(int));//列数
    for (int i = 0; i < m; i++) {
        returnColumnSizes[0][i] = n;//每一行有n个元素
    }
    //DP(mat,m,n);
    int** ans = (int**)calloc(m, sizeof(int*));//答案矩阵
    for (int i = 0; i < m; i++) {
        ans[i] = (int*)calloc(n, sizeof(int));//每一行申请n个元素
        for (int j = 0; j < n; j++) {
            if (mat[i][j]) {//mat当前元素是1
                ans[i][j] = INT_MAX-100000;//1的距离为INT_MAX-100000,防溢出
            }
        }
    }
    for(int i = 0; i<m;i++){//从上到下
        for(int j = 0;j<n;j++){//从左到右遍历
            if(i > 0){//第0行不向上遍历
                ans[i][j]=Min(ans[i][j],ans[i-1][j]+1);
            }
            if(j > 0){//第0列不向左遍历
                ans[i][j]=Min(ans[i][j],ans[i][j-1]+1);
            }
        }
    }
    for(int i = m-1;i>=0;i--){
        for(int j = n-1;j>=0;j--){
            if(i<m-1){//最后一行不向下遍历
                ans[i][j]=Min(ans[i][j],ans[i+1][j]+1);
            }
            if(j<n-1){//最后一列不向右遍历
                ans[i][j]=Min(ans[i][j],ans[i][j+1]+1);
            }
        }
    }
    return ans;
}

四、思路分析

广度优先遍历思路分析

  1. 这道题类似图的遍历,树有从根结点出发的单源遍历,图则有从多个结点出发的多源遍历。其实二者本质上是一样的,只不过图的遍历于没有从第一个结点出发,而是直接从多个结点出发,图的多源遍历相当于树的遍历第二步。
  2. 用一个队列,记录待遍历结点的坐标。
  3. 创建ans矩阵,大小等于mat,将所有0到0的距离设为0,将所有1到0的距离设为INT_MAX(int的最大值)
  4. 将所有的0,看做一个超级0,这个超级0到每个0的距离为1。将所有0的坐标入队,等待遍历。
  5. 出队队首元素,对它遍历,遍历到的下一个坐标,如果它目前到0的最近距离<(队首元素到0的距离+1),则更新下一个坐标到0的最近距离为二者最小值,同时下一个坐标入队。
  6. 注意设置边界。
  7. 细节看代码注释

动态规划思路分析

  1. 从左上往右下遍历一躺,再从右下往左上遍历一趟,更新每个点到0的最小距离。
  2. 注意设置边界
  3. 看注释!

五、AC

广度优先遍历

AC

动态规划

AC

六、复杂度分析

广度优先遍历复杂度

  1. 时间复杂度:O(mn),m是行数,n是列数。O(mn)是遍历所有元素的时间开销
  2. 空间复杂度:O(mn)队列的开销。

动态规划复杂度

  1. 时间复杂度:O(mn),m是行数,n是列数。O(mn)是遍历所有元素的时间开销
  2. 空间复杂度:O(1)除若干变量使用的常量空间,没有使用额外的线性空间。ps:其实返回矩阵规模很大,空间复杂度是O(mn)。但是算法层面,可以不考虑答案大小对空间复杂度的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清墨韵染

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值