数字信号处理(DSP)实验——离散信号产生及频谱的绘制

实验通过Matlab演示了时域与频域采样理论,包括单位脉冲、阶跃序列、复指数信号和正弦信号的生成。时域采样理论验证表明,采样频率对模拟信号频谱的周期延拓有直接影响,高采样频率减少频谱混叠。频域采样理论验证则通过不同点数的FFT和IFFT展示了采样点数与时域混叠失真的关系,验证了频域采样定理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、实验目的
1.熟悉Matlab环境。
2.掌握 Matlab 中一些基本函数的建立方法
3.要求掌握频率域采样会引起时域周期化的概念
4.频率域采样定理及其对频域采样点数选择的指导作用

二、实验内容

(1)实验原理与方法

时域采样定理的要点是:
在这里插入图片描述
频域采样定理的要点是:
在这里插入图片描述
在数字信号处理的应用中,只要涉及时域或者频域采样,都必须服从这两个采样理论的要点。对比上面叙述的时域采样原理和频域采样原理,得到一个有用的结论,这两个采样理论具有对偶性:“时域采样频谱周期延拓,频域采样时域信号周期延拓”。因此放在一起进行实验。

(2)实验内容及步骤
1.编写程序,产生以下离散序列:
(1) % f(n)=δ(n) (-3<n<4)

clc
clear
n1=-3;n2=4;n0=0;
n=n1:n2;
x=[n==n0];
stem(n,x,'filled');
axis([n1,n2,0,1.1*max(x)]);
xlabel('时间(n)');
ylabel('幅度x(n)');
title('单位脉冲序列');

结果:
在这里插入图片描述
(2) %f(n)=u(n) (-5<n<5)

clc
clear
n1=-5;n2=5;n0=0;
n=n1:n2;
x=[n>=n0];
stem(n,x,'filled');
axis([n1,n2,0,1.1*max(x)]);
xlabel('时间(n)');
ylabel('幅度x(n)');
title('单位阶跃序列');
box

结果:
在这里插入图片描述
在这里插入图片描述

clc
clear
n1=16;a=-0.1;w=1.6*pi;
n=0:n1;
x=exp((a+j*w)*n);
subplot(2,2,1);
plot(n,real(x));
title('复指数信号的实部');
subplot(2,2,3);
stem(n,real(x),'filled');
title('复指数序列的实部');
subplot(2,2,2);
plot(n,imag(x));
title('复指数信号的虚部');
subplot(2,2,4);
stem(n,imag(x),'filled');
title('复指数序列的虚部');
box  %box on

结果:
在这里插入图片描述
(4) %f(n)=3sin(nπ/4) (0<n<20); 能够算出来周期为8


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值