深度学习——感知机(perceptron)图文详解

一,什么是感知机

感知机是由美国学者FrankRosenblatt在1957年提出来的。感知机是作为神经网络(深度学习)的起源的算法。因此,学习感知机的构造也就是学习通向神经网络和深度学习的一种重要思想。
感知机接收多个输入信号,输出一个信号。这里所说的“信号”可以想象成电流或河流那样具备“流动性”的东西。像电流流过导线,向前方输送电子一样,感知机的信号也会形成流,向前方输送信息。但是,和实际的电流不同的是,感知机的信号只有“流/不流”(1/0)两种取值。这里我们认为0对应“不传递信号”, 1对应“传递信号”。
下图1就是一个接收两个输入信号的感知机的例子。
在这里插入图片描述

图1 两个输入的感知机

x1、 x2是输入信号,y是输出信号, w1、 w2是权重(w是weight的首字母)。图中的○称为“神经元”或者“节点”。输入信号被送往神经元时,会被分别乘以固定的权重(w1x1、 w2x2)。神经元会计算传送过来的信号的总和,只有当这个总和超过了某个界限值时,才会输出1。这也称为“神经元被激活” 。这里将这个界限值称为阈值,用符号θ表示。
感知机的运行原理只有这些!把上述内容用数学式来表示,就是下面这个式子(1)。
在这里插入图片描述感知机的多个输入信号都有各自固有的权重,这些权重发挥着控制各个信号的重要性的作用。也就是说,权重越大,对应该权重的信号的重要性就越高。

二,用感知机搭建简单逻辑电路

2.1 与门

知道了上面那些概念,那如何用感知机来解决简单的问题呢?这里首先以逻辑电路为题材来思考一下与门(AND gate)。与门是有两个输入和一个输出的门电路。下图这种输入信号和输出信号的对应表称为“真值表”。如图所示,与门仅在两个输入均为1时输出1,其他时候则输出0。
在这里插入图片描述

图2 与门真值表

下面考虑用感知机来表示这个与门。需要做的就是确定能满足图中的真值表的w1、 w2、 θ的值。那么,设定什么样的值才能制作出满足图中条件的感知机呢?实际上,满足上图条件的参数选择方法有无数多个。比如,当(w1, w2, θ) = (0.5, 0.5, 0.7) 时,可以满足图中条件。此外,当 (w1, w2, θ)为(0.5, 0.5, 0.8)或者(1.0, 1.0, 1.0)时,同样也满足与门的条件。设定这样的参数后,仅当x1和x2同时为1时,信号的加权总和才会超过给定的阈值θ。

2.2 与非门,或门

接着,我们再来考虑一下与非门(NAND gate)。NAND是Not AND的意思,与非门就是颠倒了与门的输出。用真值表表示的话,如下图所示,仅当x1和x2同时为1时输出0,其他时候则输出1。?
在这里插入图片描述

图3 与非门真值表

要表示与非门,可以用(w1, w2, θ) = (−0.5, −0.5, −0.7)这样的组合(其他的组合也是无限存在的)。实际上,只要把实现与门的参数值的符号取反,就可以实现与非门。接下来咱们再来看一下下面这张图所示的或门。或门是“只要有一个输入信号是1,输出就为1”的逻辑电路。
在这里插入图片描述

图4 或门真值表

注意:这里决定感知机参数的并不是计算机,而是我们人。我们看着真值表这种“训练数据”,人工考虑(想到)了参数的值。而机器学习的课题就是将这个决定参数值的工作交由计算机自动进行。 学习是确定合适的参数的过程,而人要做的是思考感知机的构造(模型),并把训练数据交给计算机。
如上所示,我们已经知道使用感知机可以表示与门、与非门、或门的逻辑电路。这里重要的一点是:与门、与非门、或门的感知机构造是一样的。实际上, 3个门电路只有参数的值(权重和阈值)不同。也就是说,相同构造的感知机,只需通过适当地调整参数的值,就可以像“变色龙演员”表演不同的角色一样,变身为与门、与非门、或门。

三,感知机的实现

3.1 简单感知机的实现

我们用Python来实现刚才的逻辑电路。这里,先定义一个接收参数x1和x2的AND函数。

def AND(x1, x2):
	w1, w2, theta = 0.5, 
感知机是二分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取 +1 和 -1 二值。感知机对应于输入空间(特征空间)中将实例划分为正负两类的分离超平面,属于判别模型。 感知机学习算法是基于随机梯度下降法的。具体地,首先任意选取一个超平面,然后用梯度下降法不断地极小化目标函数,找出最优超平面。 以下是感知机算法的C++类实现及案例代码: ```c++ #include <iostream> #include <vector> #include <random> using namespace std; class Perceptron { public: Perceptron(int feature_num) : w(feature_num), b(0) {} void train(const vector<vector<double>>& X, const vector<double>& y, int max_iter = 100) { int n_samples = X.size(); int n_features = X[0].size(); mt19937 rng(0); uniform_int_distribution<int> dist(0, n_samples - 1); for (int iter = 0; iter < max_iter; iter++) { int i = dist(rng); double wx = 0; for (int j = 0; j < n_features; j++) { wx += X[i][j] * w[j]; } double yi = y[i]; if (yi * (wx + b) <= 0) { for (int j = 0; j < n_features; j++) { w[j] += yi * X[i][j]; } b += yi; } } } double predict(const vector<double>& x) { double wx = 0; int n_features = x.size(); for (int i = 0; i < n_features; i++) { wx += x[i] * w[i]; } return wx + b > 0 ? 1 : -1; } void print_weights() const { cout << "w = ["; for (double wi : w) { cout << wi << ", "; } cout << "], b = " << b << endl; } private: vector<double> w; double b; }; int main() { vector<vector<double>> X{ {3, 3}, {4, 3}, {1, 1} }; vector<double> y{1, 1, -1}; Perceptron model(X[0].size()); model.train(X, y); model.print_weights(); cout << "predict([3, 4]) = " << model.predict({3, 4}) << endl; return 0; } ``` 在上述代码中,Perceptron类代表感知机模型。train函数接受训练数据X和y,以及最大迭代次数max_iter,默认为100。predict函数接受一个样本特征向量x,返回其预测的类别标签。print_weights函数打印训练后得到的权重和偏置项。 本例中,使用学习率为1的随机梯度下降法进行模型训练。训练数据X是一个3x2的矩阵,y是一个包含3个元素的向量,表示3个样本的类别标签。模型训练完毕后,使用predict函数对特定样本进行预测。 以上是感知机算法的C++类实现及案例代码,希望对你有所帮助。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值