线性代数学习笔记1:何为线性代数

何为代数

将具体的数学运算抽象化,只关注运算关系
( a + b ) 2 = a 2 + b 2 + 2 a b (a+b)^{2}=a^2+b^2+2ab (a+b)2=a2+b2+2ab
这种抽象有什么用?

  • a a a b b b进一步抽象向量,则得到了向量的完全平方公式 ( a + b ) 2 = a 2 + b 2 + 2 a ⋅ b \boldsymbol{(a+b)^{2}=a^2+b^2+2a \cdot b} (a+b)2=a2+b2+2ab
    也就是勾股定理和余弦定理:
    ( a + b ) 2 = ∣ a ∣ 2 + ∣ b ∣ 2 + 2 ∣ a ∣ ∣ b ∣ c o s θ \boldsymbol{(a+b)^{2}=|a|^2+|b|^2+2|a||b|cos\theta} (a+b)2=a2+b2+2abcosθ
  • 只要某个集合里的元素满足那么几条公理,元素之间的变化满足这些规律,就可以这个集合进行一系列线性化处理和分析,这个集合就叫线性空间。这个陌生的集合的性质和结构特点我们一下子就全知道了。

何为线性

  • 不要与初等数学中简单的“直线”混为一谈, y = k x + b y=kx+b y=kx+b在高等数学中不是严格的线性,而 y = k x y=kx y=kx才是线性的
  • 高等数学的线性:可加性和比例性,即:线性组合的函数=函数的线性组合 f ( k 1 x 1 + k 2 x 2 ) = k 1 f ( x 1 ) + k 2 f ( x 2 ) f(k_1x_1+k_2x_2)=k_1f(x_1)+k_2f(x_2) f(k1x1+k2x2)=k1f(x1)+k2f(x2)
  • 可加性:线性的可加性既是没有互相激励的累加,也是没有互相内耗的累加
  • 比例性/齐次性:说明没有初始值,有几倍的输入量刚好就有几倍的输出量
  • 意义:我们可以将复杂的函数运算,拆解为几个简单元素的函数运算的叠加
    一方面,线性函数运算简单,另一方面,许多复杂运算可用线性函数来近似

继续进行代数的“抽象”,从初等数学推广到高等数学,也就是将 f ( x ) = k x f(x)=kx f(x)=kx中的 k k k x x x推广为矩阵和列向量,就得到 f ( x ) = K x f(\boldsymbol x)=\mathbf K\boldsymbol x f(x)=Kx,这就是高等数学中的线性函数(本质上是一个n元齐次线性方程组)

  • 这个高等线性函数就是线性变换的表达式
  • 向量 x \boldsymbol x x(一段有向线段)通过线性变换,得到另一向量 y \boldsymbol y y,决定这个线性变换的核心是矩阵 K \mathbf K K
  • 这里矩阵就出现了!一个矩阵对应一种线性变换,因为矩阵本质上是线性方程组中的系数

何为线性代数

  • 线性问题:一个问题关联着多个因素的量,且关联性是线性的,可以进而考察多元函数
  • 线性方程:研究线性问题的方程,即一次方程
    ps. 线性方程里的变量,就是向量
  • 线性代数:讨论线性方程及线性运算的代数

线性代数发源于线性方程组的求解,解线性方程组时通用的方式就是行列式,而引入函数、变换等概念后,就有了矩阵

线性映射

不要再用静态的观点理解函数和映射(“所有满足关系式的点构成线性函数的几何图形”),应该用动态的观点(“从从自变量的集合对应变换到因变量的集合的瞬间过程”)

  • 注意,这里的“变量”是向量,可以简单理解为有向线段
  • 所以,线性映射就是把向量映射成向量
    例如, y = K x \boldsymbol y=\mathbf K\boldsymbol x y=Kx的含义就是,二维向量 x \boldsymbol x x,经过二维矩阵映射,得到另一个二维向量 y \boldsymbol y y(简单理解,线性映射就是把线段映射到线段,因为二维向量在平面内可以确定一个线段,而经过映射后,我们得到另一个线段。当然更高维向量可以以此类推)

线性变换

当线性映射发生在同一坐标系中,称为线性变换(把映射后的因变量的坐标轴,与原先的自变量的坐标轴对齐重合放置)

  • 线性变换仍然满足之前所提到的“线性(可加性和比例性)”,因此能够反映线性空间中向量的内在联系,是线性空间的重要变换
  • 同线性映射一样,线性变换把向量变成另外一个向量,或者说把“线”变成“线”
  • 线性变换两个含义:变换空间里的向量,空间坐标系不变;或者变换坐标系而向量不变。两者是相对的,结果等价

引用来源

《线性代数学习笔记》系列文章参考来源:

麻省理工学院 - MIT - 线性代数,更多课程目录:笔记流—MIT各种数学
3Blue1Brown-线性代数的本质
MIT—线性代数笔记
语雀_线性代数笔记

推荐资源

3Blue1Brown 的线性代数概念入门视频:
https://www.3blue1brown.com/topics/linear-algebra

下面的网站整理了常用 MATLAB-R-Python 命令、函数之间关系
http://mathesaurus.sourceforge.net/

如果习惯通过做题学习数学,推荐 Nathaniel Johnston 编写的 Introduction to Linear and Matrix Algebra 和 Advanced Linear and Matrix Algebra 两本线性代数教材

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值