数字调制分为三步:
- 比特映射:比特bkb_kbk映射到符号InI_nIn(一个复数,即IQ调制的复数星座点,即IQ两路实信号),符号可以取MMM种离散值,称为MMM元的,一个多元符号承载多个比特;
一系列符号组成了一个冲激函数序列I(t)=∑n=−∞∞Inδ(t−nTs)I(t)=\sum_{n=-\infty}^{\infty}I_n\delta(t-nT_s)I(t)=∑n=−∞∞Inδ(t−nTs) - 脉冲成形:每个符号对应产生某种波形,所有符号的波形按时间顺序叠加
符号序列经过成形滤波器g(t)g(t)g(t),输出电路中的连续波形,即基带信号s(t)=I(t)∗g(t)=∑n=−∞∞Ing(t−nTs)s(t)=I(t)*g(t)=\sum_{n=-\infty}^{\infty}I_ng(t-nT_s)s(t)=I(t)∗g(t)=n=−∞∑∞Ing(t−nTs)
使用不同成形脉冲的效果不同:
使用矩形脉冲,则基带信号为不断变化的矩形电平,经过上变频后得到理想正弦波;
然而,实际中常使用升余弦滚降滤波器作为成形滤波器,时域基带信号更平滑(而非矩形电平),从而上变频后能够抑制带外泄露
- 上变频:将基带信号s(t)s(t)s(t)搬移至载波,这部分和模拟调制类似
在实际中,我们传输复信号s(t)s(t)s(t)(即星座点),这一部分等效实现为IQ调制(用实频带信号传输复基带信号)
下面先接收数字调制中遇到的两个问题,然后介绍「脉冲成形」是如何解决这两个问题的
问题:带外泄露
带外泄露:信号超出了规定的工作频带,从而可能影响工作在相邻频段的系统;
另外,带宽过大时,经过带限信道后,信号也会变形,从而产生误码
- 通信中信道的频带资源有限,因此要严格控制带外泄露,具体而言也就是通过控制基带信号的带宽,从而控制已调信号的带宽(频谱搬移关系)
- 脉冲成形的作用之一是控制带外泄露,下面将看到,选择不同的成形滤波器,得到的信号频谱是不同的
问题:码间串扰
解调时,对当前符号的判决不利的两个因素是「噪声」和「码间串扰ISI」,码间串扰ISI就是其他符号(的时域拖尾)对当前采样时刻的干扰
脉冲成形后,基带信号=时域上不同时刻的一系列脉冲信号的叠加,如果一个码元 / 脉冲 达到最大幅值时,其他所有码元幅值刚好为0,则在此时进行采样判决,码元直接不会相互影响,这就是无码间串扰
无码间串扰:Nyquist准则
注意,下面分析等效复低通信号,InI_nIn为复数,g(t)g(t)g(t)为复信号,并且g(t)g(t)g(t)的持续时间不局限于一个符号周期内,而是有拖尾的(使用宽度TsT_sTs的矩阵脉冲显然没有码间串扰问题,然而存在带外泄漏问题,后面将说明:使用有拖尾的特定波形,能同时解决ISI和带外泄漏问题)
基带信号是各个码元周期对应的脉冲成形波形的移位叠加(这里假设接收信号与发射信号相同):r(t)=s(t)=∑n=−∞∞Ing(t−nTs)r(t)=s(t)=\sum_{n=-\infty}^{\infty}I_ng(t-nT_s)r(t)=s(t)=n=−∞∑∞Ing(t−nTs)
解调时,对r(t)r(t)r(t)做TsT_sTs的等间隔采样(每个符号抽样判决一次),采样结果为r(nTs)r(n T_{s})r(nTs),那么无码间串扰,就是希望r(nTs)=Inr(n T_{s})=I_nr(nTs)=In(也就是说,采样时不希望受到其他时刻符号值的影响)
系数InI_nIn只影响r(nTs)r(n T_{s})r(nTs)的幅度,将其忽略,只关注脉冲成形函数g(t)g(t)g(t),那么无码间串扰就是 要求g(t)g(t)g(t)在特殊位置的拖尾为0,即采样序列gs(t)=g(nTs)={1n=00n≠0=δ(t)g_s(t)=g\left(nT_{s}\right)=\left\{\begin{array}{ll}1 \quad n=0 \\0 \quad n \neq 0\end{array}\right.=\delta(t)gs(t)=g(nTs)={1n=00n=0=δ(t)(各符号的拖尾不影响其他符号在其他时刻的抽样判决)
进一步求解对gs(t)g_s(t)gs(t)的频谱Gs(ω)G_s(\omega)Gs(ω)的约束条件
对g(t)g(t)g(t)做TsT_sTs的等间隔采样得到gs(t)g_s(t)gs(t),对其表达式做傅立叶变换得到Gs(ω)G_s(\omega)Gs(ω).
gs(t)=g(t)∑n=−∞∞δ(t−nTs)=∑n=−∞∞g(nTs)δ(t−nTs)Gs(ω)=12πG(ω)∗[2πTs∑n=−∞∞δ(ω−2πnTs)]=1Ts∑n=−∞∞G(ω−2πnTs)g_{s}(t)=g(t) \sum_{n=-\infty}^{\infty} \delta(t-n T s)=\sum_{n=-\infty}^{\infty} g\left(n T_{s}\right) \delta(t-n T s)\\G_{s}(\omega)=\frac{1}{2\pi}G(\omega)*[\frac{2\pi}{T_s}\sum_{n=-\infty}^{\infty} \delta(\omega-\frac{2\pi n}{T_s})]=\frac{1}{T_s}\sum_{n=-\infty}^{\infty} G(\omega-\frac{2\pi n}{T_s})gs(t)=g(t)n=−∞∑∞δ(t−nTs)=n=−∞∑∞g(nTs)δ(t−nTs)Gs(ω)=2π1G(ω)∗[Ts2πn=−∞∑∞δ(ω−Ts2πn)]=Ts1n=−∞∑∞G(ω−Ts2πn)
带入gs(t)=g(nTs)=δ(t)g_s(t)=g\left(nT_{s}\right)=\delta(t)gs(t)=g(nTs)=δ(t)的要求,上面两式必须满足gs(t)=∑n=−∞∞g(nTs)δ(t−nTs)=δ(t)Gs(ω)=1Ts∑n=−∞∞G(ω−2πnTs)=1(做上式的傅里叶变换可知)g_{s}(t)=\sum_{n=-\infty}^{\infty} g\left(n T_{s}\right) \delta(t-n T s)=\delta(t)\\G_{s}(\omega)=\frac{1}{T_s}\sum_{n=-\infty}^{\infty} G(\omega-\frac{2\pi n}{T_s})=1(做上式的傅里叶变换可知)gs(t)=n=−∞∑∞g(nTs)δ(t−nTs)=δ(t)Gs(ω)=Ts1n=−∞∑∞G(ω−Ts2πn)=1(做上式的傅里叶变换可知)
这就是Nyquist准则:
- 第一个式子保证时域拖尾互不干扰,时域上每隔TsT_sTs采样,除了本码元采样点之外的所有采样点应该为0
- 第二个式子是说,将频谱G(ω)G(\omega)G(ω)以2πnTs\frac{2\pi n}{T_s}Ts2πn为周期延拓后,所有延拓的频谱叠加,应该为常数TsT_sTs;
或者也可以仅关注一个主值区间内的情况:将频谱G(ω)G(\omega)G(ω)沿ω\omegaω轴以2πnTs\frac{2\pi n}{T_s}Ts2πn为长度切段,平移各段到原点附近并累加,结果应该为常数TsT_sTs
要满足Nyquist准则,脉冲成形函数g(t)g(t)g(t) / 基带信号s(t)s(t)s(t)的的最小带宽为B0≥12Ts=Rs2B_0\geq \frac{1}{2T_s}=\frac{R_s}{2}B0≥2Ts1=2Rs(或者说最小数字频率2πB0≥πTs2\pi B_0\geq \frac{\pi}{T_s}2πB0≥Tsπ)
注意,这里的带宽B0B_0B0是理想低通信道的带宽
或者等价的说,带通信道的Nyquist带宽为B0≥RsB_0\geq R_sB0≥Rs
实际中,OFDM信号就达到带通信道的奈奎斯特带宽,理论上最节约信道资源
虽然实际上基带信道带宽略大于Rs2\frac{R_s}{2}2Rs,但是相邻频带重叠,利用子载波正交性总体上仍没有重叠,即等效于到达了最小的奈奎斯特带宽,实现理论最大频带利用率
扩展:奈奎斯特带宽、奈奎斯特速率
在Nyquist准则的基础上,我们又得到了奈奎斯特带宽、奈奎斯特速率的概念
信道容量:在信道中进行无差错传输可达的最大信息速率
解调时,对当前符号的判决不利的是「噪声」和「码间串扰ISI」,在不同信道情况下,计算信道容量的方式不同。下面可以看出,「码间串扰ISI」是信道容量永远无法摆脱的内在束缚,而「噪声」的存在进一步减小了信道容量
- 理想无噪信道:数据率的限制仅来自于信号的「带宽 」(涉及码间串扰限制),计算信道容量使用奈奎斯特准则
理解:即使没有噪声,信号自己会对自己造成干扰(这就是码间干扰,就像说话太快前后几个字混淆不清),但是只要不断增加带宽就能不断增加数据率
奈奎斯特准则的理论,延伸出奈奎斯特带宽和奈奎斯特速率两个概念(下面的BBB是理想的低通信道的带宽)
奈奎斯特带宽:固定了符号速率Rs=1TsR_s=\frac{1}{T_s}Rs=Ts1,则在无噪信道无ISI(无差错)传输所需的最小带宽B≥Rs2B\geq \frac{R_s}{2}B≥2Rs
奈奎斯特速率:固定了带宽BBB,那么在无噪信道无ISI(无差错)传输能达到的最大符号速率为Rs≤2BR_s\leq2BRs≤2B
根据奈奎斯特速率,无噪信道容量:C=2Blog2M(bps)C=2Blog_2M(bps)C=2Blog2M(bps),其中MMM为一个码元可能对应的离散值个数
- 实际有噪信道:数据率上限由「带宽」和「信噪比」共同决定(而不仅仅是带宽了),计算信道容量使用香农公式
理解:有噪声的情况下,香农公式指出,无限增加带宽就不一定能相应增加传输速率了,因为信道带宽增加其中混入的白噪声也就增加了(信道容量上限limB→∞C=log2e⋅(S/n0),n0为噪声功率谱密度\lim_{B\rightarrow\infty C=log_2e\cdot(S/n_0)},n_0为噪声功率谱密度limB→∞C=log2e⋅(S/n0),n0为噪声功率谱密度)
有噪信道容量:C=2Blog2(1+SNR)C=2Blog_2(1+SNR)C=2Blog2(1+SNR),其中MMM为一个码元可能对应的离散值个数
脉冲成形
想要在信道中真正传输数字信号(如01比特),必须将它们转化为一定的电路波形 / 脉冲信号,称为脉冲成形;
脉冲成形,具体实现方法就是冲激信号经过基带滤波器g(t)g(t)g(t)(一个滤波器),得到时域脉冲波形,下面讨论什么样的g(t)g(t)g(t)是合适的
结论:
- 理论分析中可以用矩形脉冲,但实际中均为类似sinc的脉冲,由升余弦滚降滤波器生成
矩形脉冲没有 ISI 问题,但有带外泄漏,而使用类似sinc的脉冲可以同时解决ISI和带外泄漏问题 - 注意,采用sinc脉冲会进一步导致PSK / QAM调制得到的波形,并不是标准的余弦波(这对应于由矩形脉冲生成的理想波形),然而我们在实际中并不需要关注调制后的波形如何,只要关注波形解调后对于sinc脉冲的采样判决,后面将看到,sinc脉冲能很好的降低码间串扰
- 接收端收到基带的脉冲信号,进行采样判决,再将其还原为一个个符号,进而得到数字信号
具体分析如下:
矩形脉冲:带宽无限,不可行
最容易想到的脉冲就是矩形脉冲,我们直接用其高低电平来对应数字信号,然而脉冲信号的频谱有无限的带宽:F[rect(tτ)]=τsinc(τf)\mathscr F[rect(\frac{t}{\tau})]=\tau sinc(\tau f)F[rect(τt)]=τsinc(τf)
实际信道带宽有限,这样就会导致传输后信号频谱变形,时域信号失真,很容易误判
或者说,带外功率的衰减慢,带外泄露强
如图,发送端的理想矩形脉冲,经过信道后信号失真(频域上低通,时域上平滑),从而误判
可见,矩形脉冲在频域上带宽无限,经过带限信道很容易失真,这就是为什么要控制带外泄露
接下来尝试选择其他更合适的脉冲成形滤波器
sinc脉冲:理想的脉冲成形
前置知识补充
根据尺度变换性质F[x(αt)]=1∣α∣X(ωα)\mathscr{F}[x(\alpha t)]=\frac{1}{|\alpha|}X(\frac{\omega}{\alpha})F[x(αt)]=∣α∣1X(αω),尺度变换因子α\alphaα对时域和频域的作用是相反的:
- α>1\alpha>1α>1时域波形变窄,则频谱变宽(含有更多高频分量)
- 也可以说,时域信号的跳变引起频域的扩展(时域跳变包含大量高频成分,从而频谱变宽)
频域信号的跳变引起时域的扩展
既然需要有限宽的频谱来减少带外泄露,则根据傅里叶变换的对偶性,我们想到F[sinc(τt)]=1τrect(fτ),其中τ=2B\mathscr F[sinc(\tau t)]=\frac{1}{\tau}rect(\frac{f}{\tau}),其中\tau=2BF[sinc(τt)]=τ1rect(τf),其中τ=2B
左侧为sinc信号时域波形,右侧为频谱(就是一个理想LPF)
使用sinc作为脉冲信号,优点如下:
- 频谱带宽有限(理想LPF的频谱),经过带通信道不失真
- 实现简单:脉冲成形的成形滤波器就是理想LPF
- sinc信号每间隔1/τ1/\tau1/τ幅值取0,因此只要取τ=2B\tau=2Bτ=2B,sinc脉冲信号的发送间隔为1/τ=1/(2B)1/\tau=1/(2B)1/τ=1/(2B),即可实现无码间串扰
此时码元速率刚好为奈奎斯特速率Rs=2BR_s=2BRs=2B;带通频谱宽度(为矩形频谱的总宽度)为τ=2B\tau=2Bτ=2B,刚好为奈奎斯特带宽
如图,如果一个码元 / 脉冲 达到最大幅值时,其他所有码元幅值刚好为0,在此时进行采样判决,码元直接不会相互影响,这就是无码间串扰
sinc函数实现了Nyquist准则要求的最小带宽Rs/2R_s/2Rs/2,并且无码间干扰ISI,但问题在于
-
sinc脉冲成形对应的基带滤波器是理想LPF,是不可能实现的
-
理想的LPF是非因果滤波器(冲激响应在时域上有无限长的拖尾,当前输出取决于未来输入),想要实现必须将系统冲激响应的拖尾截断并做延时(将一段时间的输入缓存下来),转化为因果系统;
并且,截断位置和延时取决于 信号何时衰减至可以被忽略,信号衰减越快,可以使用越小的截断范围和延时
-
衰减速度慢还带来其他缺点:拖尾衰减速度慢,且拖尾振荡幅度大,因此一旦出现定时偏差/采样时刻偏离,将导致严重码间串扰(有定时偏差,不能保证当前码元抽样时刻“对齐”了其余码元取值为0的位置,从而由于拖尾引起码间串扰**)
也就是说,拖尾衰减慢,则要求采样精度更高
综上,sinc函数作为脉冲成形函数,理论上可行,实际上仍需改进(希望加快衰减速度)
升余弦滚降滤波器:从理想sinc到实际应用
sinc脉冲成形函数的缺点是时域拖尾长,但频谱是理想LPF,无法实现;
由于频域信号的跳变引起时域的扩展,可以采用频谱更平滑的脉冲成形滤波器,从而时域拖尾衰减更快——此即升余弦滚降滤波器
实际应用中,使用「升余弦滚降滤波器RC」来逼近理想的LPF,并且能够控制脉冲的拖尾衰减速度
升余弦滚降滤波器RC可以加速信号拖尾的衰减,代价是频带的展宽
如右图,升余弦滚降滤波器RC一般有过渡带,且过渡带就是把余弦函数的一个周期升高了1,故称"升余弦"g(t)=sinc(tTs)cos(παt/Ts)1−(2αt/Ts)2G(ω)={Ts∣ω∣⩽∣1−α∣2πB0Ts2[1+cos∣ω∣−(1−α)2πB04αB0]∣1−α∣2πB0<∣ω∣⩽∣1+α∣2πB00∣ω∣>∣1+α∣2πB0g(t)=\operatorname{sinc}\left(\frac{t}{T_{s}}\right) \frac{\cos \left(\pi \alpha t / T_{s}\right)}{1-\left(2 \alpha t / T_{s}\right)^{2}}\quad G(\omega)=\left\{\begin{array}{ll} T_{s} & |\omega| \leqslant|1-\alpha| 2 \pi B_{0} \\ \frac{T_{s}}{2}\left[1+\cos \frac{|\omega|-(1-\alpha) 2 \pi B_{0}}{4 \alpha B_{0}}\right] & |1-\alpha| 2 \pi B_{0}<|\omega| \leqslant|1+\alpha| 2 \pi B_{0} \\ 0 & |\omega|>|1+\alpha| 2 \pi B_{0} \end{array}\right.g(t)=sinc(Tst)1−(2αt/Ts)2cos(παt/Ts)G(ω)=⎩⎪⎨⎪⎧Ts2Ts[1+cos4αB0∣ω∣−(1−α)2πB0]0∣ω∣⩽∣1−α∣2πB0∣1−α∣2πB0<∣ω∣⩽∣1+α∣2πB0∣ω∣>∣1+α∣2πB0
升余弦滚降滤波器的关键参数是 滚降系数α\alphaα,满足0≤α≤10\leq\alpha\leq10≤α≤1
如图,升余弦滚降滤波器RC的频率响应是平缓的(因此相比于理想LPF可实现性更强),过渡带中心为f0=B=Rs2=12Tsf_0=B=\frac{R_s}{2}=\frac{1}{2T_s}f0=B=2Rs=2Ts1
- 无论α\alphaα取值如何,时域波形仍然满足:每间隔Ts=12f0=12BT_s=\frac{1}{2f_0}=\frac{1}{2B}Ts=2f01=2B1取值为0
- 无论α\alphaα取值如何,频率响应的过渡带中心固定为f0f_0f0
- α\alphaα控制了频率响应的过渡带宽度,过渡带中心f0f_0f0向左有αf0\alpha f_0αf0宽度,向右同样有αf0\alpha f_0αf0宽度,故总带宽(1+α)f0(1+\alpha)f_0(1+α)f0
α=0\alpha=0α=0就是理想LPF的情况;
α\alphaα增大,频域增大带宽(实现难度降低),时域的信号拖尾衰减加快(能够减小由定时偏差带来的码间串扰);
然而α\alphaα过大也意味着频带利用率η\etaη降低:η=Rs(1+α)Rs/2=21+α(Baud/Hz)\eta=\frac{R_s}{(1+\alpha)R_s/2}=\frac{2}{1+\alpha}(Baud/Hz)η=(1+α)Rs/2Rs=1+α2(Baud/Hz),需要权衡利弊(一般取α=0.3\alpha=0.3α=0.3)
下面证明:为了无码间串扰,升余弦滚降滤波器RC的过渡带中心必须取f0=Rs/2f_0=R_s/2f0=Rs/2,进而时域脉冲信号带宽(1+α)Rs/2(1+\alpha)R_s/2(1+α)Rs/2;
要满足无码间串扰:
- 从时域看:由于波形每隔12f0=12B\frac{1}{2f_0}=\frac{1}{2B}2f01=2B1取0,则无ISI要求码元速率Rs=2f0=2BR_s=2f_0=2BRs=2f0=2B
- 或者从频域看:要满足Nyquist准则(频谱以RsR_sRs做周期延拓并叠加后为恒定常数),这也要求了必须取过渡带中心f0=Rs/2f_0=R_s/2f0=Rs/2
从两个角度分析,得到的结果是统一的
对比两种成形脉冲:
- sinc脉冲(理想LPF):无码间串扰,满足奈奎斯特准则,且带宽刚好就是奈奎斯特带宽Rs/2R_s/2Rs/2(给定码元速率时理想的最小带宽)
- 升余弦滚降滤波器RC:无码间串扰,但是带宽(1+α)f0(1+\alpha)f_0(1+α)f0,略大于带奎斯特带宽
最终,采样升余弦滚降滤波器作为基带滤波器,进行脉冲成形,得到的时域波形如下:
可见,在每个抽样点处,当前码元的幅值达到最大,而其余码元在该点幅值为0,从而无码间串扰,能够正确判决
眼图:评估码间串扰情况
眼图是评价实际系统的码间串扰情况的工具,示波器叠加显示基带信号的波形,波形如同眼睛,称为眼图
眼图生成原理
理论上当前码元的波形受其余所有码元的拖尾影响,但最主要的影响来自前后两个码元,因此我们只关注连续三个码元的时域叠加波形即可:三个码元所有可能取值为000、001、010、011、100、101、110、111000、001、010、011、100、101、110、111000、001、010、011、100、101、110、111
和上面的图片同理,上图中000000000三个码元的合成波形为(码元000对应的是正脉冲)
001001001三个码元的合成波形为
010010010三个码元的合成波形为
由此类推,所有可能的连续三个码元的时域波形叠加,得到了眼图
眼图能显示噪声和码间串扰的影响
- 噪声:导致眼图中的线迹模糊不清
- 码间串扰:导致“眼睛”张开的更小、眼图不端正(眼图的中心时刻对应了当前码元的采样判决时刻,如果混入了其他码元的影响,则“眼睛”就逐渐闭上了)