Eg1 矩阵乘法和齐次方程
对于 A = [ v 1 v 2 v 3 ] A=[\mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_3] A=[v1v2v3],有方程 A x = v 1 − v 2 + v 3 \mathbf A \mathbf{x}=\mathbf{v}_1-\mathbf{v}_2+\mathbf{v}_3 Ax=v1−v2+v3
- 求解方程
A
x
=
v
1
−
v
2
+
v
3
\mathbf A \mathbf{x}=\mathbf{v}_1-\mathbf{v}_2+\mathbf{v}_3
Ax=v1−v2+v3
根据矩阵乘法,直接可得解为 x = [ 1 − 1 1 ] x=\left[\begin{array}{c}1 \\-1 \\1\end{array}\right] x=⎣⎡1−11⎦⎤ - 若
v
1
−
v
2
+
v
3
=
0
\mathbf{v}_1-\mathbf{v}_2+\mathbf{v}_3=0
v1−v2+v3=0,方程
A
x
=
0
\mathbf A \mathbf{x}=\mathbf 0
Ax=0的解是否唯一?
解是否唯一,看零空间的维数即可:根据 v 1 − v 2 + v 3 = 0 \mathbf{v}_1-\mathbf{v}_2+\mathbf{v}_3=0 v1−v2+v3=0,列线性相关,秩 r < n r<n r<n,零空间维数 n − r > 0 n-r>0 n−r>0,因此零空间有非零向量, A x = 0 \mathbf A \mathbf{x}=\mathbf 0 Ax=0有无穷个非零解;
理解二:由于列线性相关, A \mathbf A A对应降维的变换,从而有一个空间被压缩到原点, A x = 0 \mathbf A \mathbf{x}=\mathbf 0 Ax=0有无穷个非零解;
Eg2.1 方程解的结构
对于 m × n m\times n m×n的秩为 r r r的矩阵,已知①方程 A x = [ 1 0 0 ] \boldsymbol{A x} =\left[\begin{array}{l}1 \\0 \\0\end{array}\right] Ax=⎣⎡100⎦⎤无解;② A x = [ 0 1 0 ] \boldsymbol{A x}=\left[\begin{array}{l}0 \\1 \\0\end{array}\right] Ax=⎣⎡010⎦⎤有唯一解;
- 求
m
,
n
,
r
m,n,r
m,n,r的范围
Ⅰ. 首先,矩阵乘法要求 m = 3 m=3 m=3
Ⅱ. 由①,方程无解,必然意味着消元后出现“0=1”,也即行向量相关(必要不充分),则秩 r < m r<m r<m
理解二:方程消元后,若每行有一个主元(行满秩 r = m r=m r=m/行向量线性无关),则方程必有解;
而方程无解必然意味着消元后主元数<行数/行不满秩/行向量相关,即 r < m r<m r<m
Ⅲ. 由②,非齐次方程有唯一解,则齐次方程 A x = 0 \boldsymbol{A x}=0 Ax=0有唯一零解(通解=特解+零空间),故零空间仅有零向量,零空间维度 n − r = 0 n-r=0 n−r=0, r = n r=n r=n;
理解二: A \boldsymbol A A不是降维的变换,则变换后基向量个数不变, r = n r=n r=n
最终, r = n < m = 3 r=n<m=3 r=n<m=3 - 写出一个符合条件的
A
\boldsymbol A
A
A \boldsymbol A A秩为1的例子是 A = [ 0 1 0 ] \boldsymbol{A} =\left[\begin{array}{l}0 \\1 \\0\end{array}\right] A=⎣⎡010⎦⎤; A \boldsymbol A A秩为2的例子是 A = [ 0 0 1 0 0 1 ] \boldsymbol{A}=\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{array}\right] A=⎣⎡010001⎦⎤(保证方程①消元后第一行出现“0=1”,而方程②有解即可) - 求证:对于任意的
c
\mathbf c
c,方程至少有
A
T
y
=
c
\mathbf A^T\mathbf y=\mathbf c
ATy=c一个解
由于方程消元后,若每行有一个主元(行满秩 r = m r=m r=m/行向量线性无关),则方程必有解;
又因为已知 r = n r=n r=n,故 A T \mathbf A^T AT行满秩,满足上述条件
另外关注解的个数: A T \mathbf A^T AT零空间(即 A \mathbf A A左零空间)维数 m − r > 0 m-r>0 m−r>0,方程 A T y = c \mathbf A^T\mathbf y=\mathbf c ATy=c有无穷个解
Eg2.2 A T A \mathbf A^T \mathbf A ATA
对于上一题的 A \boldsymbol A A, r = n < m = 3 r=n<m=3 r=n<m=3,判断下列命题是否成立
① A T A \mathbf A^T \mathbf A ATA可逆
② A A T \mathbf A \mathbf A^T AAT正定
③ d e t ( A T A ) = d e t ( A A T ) det(\mathbf A^T \mathbf A)=det(\mathbf A \mathbf A^T) det(ATA)=det(AAT)
- ①真命题。根据以前的知识,列满秩 r = n r=n r=n则 A T A \mathbf A^T \mathbf A ATA必为正定矩阵,其行列式>0必可逆
- ②假命题。两矩阵相乘,秩不会增大,因此 m m m阶方阵 A A T \mathbf A \mathbf A^T AAT的秩最多为 r < m r<m r<m,不是列满秩,因此不可能为正定矩阵
- ③假命题。由上, A T A \mathbf A^T \mathbf A ATA可逆(行列式>0)而 A A T \mathbf A \mathbf A^T AAT不可逆,故 d e t ( A T A ) ≠ d e t ( A A T ) det(\mathbf A^T \mathbf A)\neq det(\mathbf A \mathbf A^T) det(ATA)=det(AAT)
注意,对于方阵 A \mathbf A A和方阵 B \mathbf B B,必然有 d e t ( A B ) = d e t ( A ) d e t ( B ) = d e t ( B A ) det(\mathbf A \mathbf B)=det(\mathbf A)det(\mathbf B)=det(\mathbf B\mathbf A) det(AB)=det(A)det(B)=det(BA);对于非方阵则不成立
Eg3 Markov矩阵、差分方程与稳态
已知Markov矩阵 A = [ 0.2 0.4 0.3 0.4 0.2 0.3 0.4 0.4 0.4 ] \boldsymbol{A} =\left[\begin{array}{ccc} 0.2 & 0.4 & 0.3 \\ 0.4 & 0.2 & 0.3 \\ 0.4 & 0.4 & 0.4 \end{array}\right] A=⎣⎡0.20.40.40.40.20.40.30.30.4⎦⎤
- 求特征值
①通过观察,矩阵的列向量相关(列一+列二=2倍列三),则矩阵不可逆,必有特征值 λ 1 = 0 \lambda_1=0 λ1=0
②马尔可夫矩阵必然有特征值 λ 2 = 1 \lambda_2=1 λ2=1
③根据迹=对角元之和=特征值之和,最后一个特征值 λ 3 = − 0.2 \lambda_3=-0.2 λ3=−0.2 - 求差分方程
u
k
=
A
k
u
0
,
u
0
=
[
0
10
0
]
\mathbf{u}_{k}=\boldsymbol{A}^{k}\mathbf{u}_0,\mathbf{u}_0=\left[\begin{array}{c}0 \\10 \\0\end{array}\right]
uk=Aku0,u0=⎣⎡0100⎦⎤的稳态(即
k
→
∞
k\rightarrow\infty
k→∞时的
u
k
\mathbf{u}_{k}
uk)
首先分析稳态中有哪些项:先将 u 0 \mathbf{u}_0 u0表示为特征向量的线性组合 u 0 = c 1 x 1 + c 2 x 2 + c 3 x 3 \mathbf{u}_0=c_1\mathbf{x}_1+c_2\mathbf{x}_2+c_3\mathbf{x}_3 u0=c1x1+c2x2+c3x3,那么 u k = c 1 λ 1 k x 1 + c 2 λ 2 k x 2 + c 3 λ 3 k x 3 \mathbf{u}_{k} =c_{1} \lambda_{1}^{k} \mathbf{x}_{1}+c_{2} \lambda_{2}^{k} \mathbf{x}_{2}+c_{3} \lambda_{3}^{k} \mathbf{x}_{3} uk=c1λ1kx1+c2λ2kx2+c3λ3kx3,由于 λ 1 = 0 , λ 2 = 1 , λ 3 = − 0.2 \lambda_1=0,\lambda_2=1,\lambda_3=-0.2 λ1=0,λ2=1,λ3=−0.2,最终的稳态只会剩下第二项,因此关注 λ 2 = 1 \lambda_2=1 λ2=1对应的特征向量即可;
求得特征向量 x 2 = [ 3 3 4 ] \mathbf{x} 2 =\left[\begin{array}{l}3 \\3 \\4\end{array}\right] x2=⎣⎡334⎦⎤,故稳态 u k = [ 3 3 4 ] \mathbf{u k} =\left[\begin{array}{l}3 \\3 \\4\end{array}\right] uk=⎣⎡334⎦⎤
ps. 由于是Markov矩阵,问题可视为人口迁移问题,一开始有10个人,最终总共还是10个人,但分布不同
Eg4 最小二乘法
对于方程 A x = b \mathbf A\mathbf x=\mathbf b Ax=b即 [ 1 0 1 1 1 2 ] [ C ^ D ^ ] = [ 3 4 1 ] \left[\begin{array}{ll}1 & 0 \\1 & 1 \\1 & 2\end{array}\right] \left[\begin{array}{l}\hat{C} \\\hat{D}\end{array}\right]= \left[\begin{array}{l}3 \\4 \\1\end{array}\right] ⎣⎡111012⎦⎤[C^D^]=⎣⎡341⎦⎤,
已知通过最小二乘法得出的“最优解”为 [ C ^ D ^ ] = [ 11 / 3 − 1 ] \left[\begin{array}{c}\hat{C} \\\hat{D}\end{array}\right] =\left[\begin{array}{c}11 / 3 \\-1\end{array}\right] [C^D^]=[11/3−1]
-
求向量 b = [ 3 4 1 ] \mathbf b=\left[\begin{array}{l}3 \\4 \\1\end{array}\right] b=⎣⎡341⎦⎤在 A \mathbf A A列空间上的投影 p \mathbf p p
根据最小二乘法的几何意义,其就是将 b \mathbf b b向 A \mathbf A A列空间投影,然后对投影 p \mathbf p p求解“最优解”;
因此,带入 [ C ^ D ^ ] = [ 11 / 3 − 1 ] \left[\begin{array}{c}\hat{C} \\\hat{D}\end{array}\right] =\left[\begin{array}{c}11 / 3 \\-1\end{array}\right] [C^D^]=[11/3−1]得到投影 p = [ 1 0 1 1 1 2 ] [ C ^ D ^ ] = [ 11 / 3 8 / 3 5 / 3 ] \mathbf p=\left[\begin{array}{ll}1 & 0 \\1 & 1 \\1 & 2\end{array}\right] \left[\begin{array}{l}\hat{C} \\\hat{D}\end{array}\right]=\left[\begin{array}{c}11 / 3 \\8 / 3 \\5 / 3\end{array}\right] p=⎣⎡111012⎦⎤[C^D^]=⎣⎡11/38/35/3⎦⎤ -
将问题视为对三个数据点的直线拟合,画出对应的图像
希望直线 y = k x + b y=kx+b y=kx+b同时过三个点,方程写为:
[ 1 0 1 1 1 2 ] [ b k ] = [ 3 4 1 ] \begin{bmatrix}1 & 0 \\1 & 1 \\1 & 2\end{bmatrix}\begin{bmatrix}b\\k\end{bmatrix}=\begin{bmatrix}3\\4\\1\end{bmatrix} ⎣⎡111012⎦⎤[bk]=⎣⎡341⎦⎤
对应的三个点为 ( 0 , 3 ) , ( 1 , 4 ) , ( 2 , 1 ) (0,3),(1,4),(2,1) (0,3),(1,4),(2,1),而最“最优解” [ 11 / 3 − 1 ] \left[\begin{array}{c}11 / 3 \\-1\end{array}\right] [11/3−1]给出终拟合得到的直线 y = − x + 11 / 3 y=-x+11/3 y=−x+11/3
-
另求一个非零向量 b \mathbf b b,使得 A x = b \mathbf A\mathbf x=\mathbf b Ax=b最小二乘法的“最优解”为 0 \mathbf 0 0,即 [ C ^ D ^ ] = [ 0 0 ] \left[\begin{array}{l}\hat{C} \\\hat{D}\end{array}\right] =\left[\begin{array}{l}0 \\0\end{array}\right] [C^D^]=[00]
根据最小二乘法的几何意义,先将 b \mathbf b b向 A \mathbf A A列空间投影得到 p \mathbf p p,那么“最优解”就是 A x ^ = p \mathbf A\mathbf {\hat x}=\mathbf p Ax^=p的解
仅当 b \mathbf b b垂直/正交于 A \mathbf A A列空间时,投影为 p = 0 \mathbf p=\mathbf 0 p=0,进而“最优解”为 0 \mathbf 0 0,从而得到 b = [ 1 − 2 1 ] \mathbf{b}=\left[\begin{array}{c}1 \\-2 \\1\end{array}\right] b=⎣⎡1−21⎦⎤
Eg5 矩阵特性
求符合下列要求的2x2矩阵
①能将向量投影到 a = [ 4 − 3 ] \mathbf{a}=\left[\begin{array}{c}4 \\-3\end{array}\right] a=[4−3]的投影矩阵
②具有特征值 0 , 3 0,3 0,3和特征向量 [ 1 2 ] , [ 2 1 ] {\left[\begin{array}{l}1 \\2\end{array}\right] , \left[\begin{array}{l}2 \\1\end{array}\right]} [12],[21]的矩阵
③不能被分解为 A = B T B \boldsymbol A=\boldsymbol{B}^{T} \boldsymbol{B} A=BTB的矩阵
④特征向量正交的矩阵(除了对称阵)
- ①投影矩阵 P = A ( A T A ) − 1 A T = a a T a T a = … … \mathbf P=\mathbf A(\mathbf A^T\mathbf A )^{-1}\mathbf A^T=\frac{\mathbf{a a}^{T}}{\mathbf{a}^{T} \mathbf{a}}=\ldots \ldots P=A(ATA)−1AT=aTaaaT=……
- ②根据相似对角化,可得到矩阵 A = S − 1 Λ S = [ 1 2 2 1 ] [ 0 0 0 3 ] [ 1 2 2 1 ] − 1 = … … \boldsymbol{A}=\boldsymbol{S}^{-1} \boldsymbol{\Lambda} \boldsymbol{S}=\left[\begin{array}{ll} 1 & 2 \\ 2 & 1 \end{array}\right]\left[\begin{array}{ll}0 & 0 \\0 & 3\end{array}\right] \left[\begin{array}{ll}1 & 2 \\2 & 1\end{array}\right]^{-1} =\ldots \ldots A=S−1ΛS=[1221][0003][1221]−1=……
- ③ B T B \boldsymbol{B}^{T} \boldsymbol{B} BTB至少为半正定矩阵,那么只要给出任意一个不对称的矩阵,即可满足“不能被分解为 A = B T B \boldsymbol A=\boldsymbol{B}^{T} \boldsymbol{B} A=BTB”
- ④特征向量正交,几何上对应“旋转”的线性变换
例如正交矩阵 A = [ c o s − s i n s i n c o s ] \boldsymbol{A}=\left[\begin{array}{ll} cos & -sin \\ sin & cos \end{array}\right] A=[cossin−sincos](特征值为纯虚数,对应旋转,特征向量正交)
又如反对称矩阵 A = [ 0 1 − 1 0 ] \boldsymbol{A}=\left[\begin{array}{ll} 0 & 1 \\ -1 & 0 \end{array}\right] A=[0−110]
Eg6 求矩阵的SVD分解
Eg 6.1
对于可逆矩阵 A = [ 4 4 − 3 3 ] \boldsymbol{A}=\left[\begin{array}{cc}4 & 4 \\-3 & 3\end{array}\right] A=[4−343]求SVD分解(可逆矩阵 r = n r=n r=n,则 A T A \boldsymbol{A}^{T} \boldsymbol{A} ATA和 A A T \boldsymbol{A}\boldsymbol{A}^{T} AAT为正定矩阵,特征值全为正, A \boldsymbol{A} A对应的奇异值全为正)
首先求正交矩阵 V \boldsymbol{V} V和正交矩阵 U \boldsymbol{U} U
- 求正交矩阵
V
\boldsymbol{V}
V
计算 A T A = [ 25 7 7 25 ] \boldsymbol{A}^{T} \boldsymbol{A}=\left[\begin{array}{cc} 25 & 7 \\ 7 & 25 \end{array}\right] ATA=[257725],特征值 λ 1 = σ 1 2 = 32 , λ 2 = σ 2 2 = 18 \lambda_1=\sigma_{1}^{2}=32, \lambda_2=\sigma_{2}^{2}=18 λ1=σ12=32,λ2=σ22=18,特征向量 v 1 = [ 1 / 2 1 / 2 ] , v 2 = [ 1 / 2 − 1 / 2 ] \mathbf{v} 1=\left[\begin{array}{l}1 / \sqrt{2} \\1 / \sqrt{2}\end{array}\right], \mathbf{v} 2=\left[\begin{array}{r}1 / \sqrt{2} \\-1 / \sqrt{2}\end{array}\right] v1=[1/21/2],v2=[1/2−1/2](注意,由于U中需要标准正交基,需要将一般的特征向量 [ 1 1 ] , [ 1 − 1 ] {\left[\begin{array}{l}1 \\1\end{array}\right] , \left[\begin{array}{l}1 \\-1\end{array}\right]} [11],[1−1]标准化)
最终, V = [ 1 / 2 1 / 2 1 / 2 − 1 / 2 ] \boldsymbol{V}=\left[\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\1 / \sqrt{2} & -1 / \sqrt{2}\end{array}\right] V=[1/21/21/2−1/2], Σ = [ 32 0 0 18 ] \boldsymbol{\Sigma}=\left[\begin{array}{cc}\sqrt{32} & 0 \\0 & \sqrt{18}\end{array}\right] Σ=[320018] - 求正交矩阵
U
\boldsymbol{U}
U
计算 A A T = [ 32 0 0 18 ] \boldsymbol{A} \boldsymbol{A}^{T}=\left[\begin{array}{cc}32 & 0 \\0 & 18\end{array}\right] AAT=[320018],特征值 λ 1 = σ 1 2 = 32 , λ 2 = σ 2 2 = 18 \lambda_1=\sigma_{1}^{2}=32, \lambda_2=\sigma_{2}^{2}=18 λ1=σ12=32,λ2=σ22=18,特征向量 [ 1 0 ] , [ 0 1 ] {\left[\begin{array}{l}1 \\0\end{array}\right] , \left[\begin{array}{l}0 \\1\end{array}\right]} [10],[01]
A V = [ 32 0 0 − 18 ] = U Σ \boldsymbol{A}\boldsymbol{V} =\left[\begin{array}{cc}\sqrt{32} & 0 \\0 & -\sqrt{18}\end{array}\right]=\boldsymbol{U} \boldsymbol{\Sigma} AV=[3200−18]=UΣ来帮助确定特征向量 u i \mathbf{u}_i ui所取的符号
最后, U = [ 1 0 0 − 1 ] \boldsymbol{U}=\left[\begin{array}{cc}1 & 0 \\0& -1\end{array}\right] U=[100−1](注意,不是 [ 1 0 0 1 ] \left[\begin{array}{cc}1 & 0 \\0& 1\end{array}\right] [1001])
SVD分解结果: A = U Σ V T , [ 4 4 − 3 3 ] = [ 1 0 0 − 1 ] [ 32 0 0 18 ] [ 1 / 2 1 / 2 1 / 2 − 1 / 2 ] \boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T},\quad\left[\begin{array}{cc}4 & 4 \\-3 & 3\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\0& -1\end{array}\right]\left[\begin{array}{cc}\sqrt{32} & 0 \\0 & \sqrt{18}\end{array}\right]\left[\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\1 / \sqrt{2} & -1 / \sqrt{2}\end{array}\right] A=UΣVT,[4−343]=[100−1][320018][1/21/21/2−1/2]
Eg 6.2
对于奇异矩阵 A = [ 4 3 8 6 ] \boldsymbol{A}=\left[\begin{array}{cc}4 & 3 \\8 & 6\end{array}\right] A=[4836]求SVD分解(奇异矩阵 r < n r<n r<n,则 A T A \boldsymbol{A}^{T} \boldsymbol{A} ATA和 A A T \boldsymbol{A}\boldsymbol{A}^{T} AAT为半正定矩阵)
与上面不同的是,这里 A \boldsymbol{A} A为奇异矩阵,秩为1,导致了 A \boldsymbol{A} A的行空间并不能张成整个 R 2 \boldsymbol{R}^2 R2空间,因此这里的SVD即 A V = U Σ \boldsymbol{A}\boldsymbol{V} =\boldsymbol{U} \boldsymbol{\Sigma} AV=UΣ的 V \boldsymbol{V} V中,还多了“零空间”的部分(如上面所述,这部分对应 Σ \boldsymbol{\Sigma} Σ中的零元素)
由于是秩1矩阵,情况比较简单,我们不再用上面的通用方法求正交矩阵
V
\boldsymbol{V}
V和正交矩阵
U
\boldsymbol{U}
U,这里直接从矩阵的行空间和列空间来求解,同时有助于加深理解:
- 这里行空间为一条直线,零空间则与之正交(垂直);列空间与左零空间同理
- 根据前面所讲,我们要在整个 R 2 \boldsymbol{R}^2 R2空间(行空间+零空间)中找一组标准正交基,其被 A \boldsymbol{A} A线性变换后,得到 R 2 \boldsymbol{R}^2 R2空间中的另一组标准正交基(对应到列空间+左零空间)
- 如图,很容易得到行空间+零空间的标准正交基为
v
1
=
[
4
/
5
3
/
5
]
,
v
2
=
[
3
/
5
−
4
/
5
]
\mathbf{v} 1=\left[\begin{array}{l}4/5 \\3/5\end{array}\right], \mathbf{v} 2=\left[\begin{array}{r}3/5\\-4/5\end{array}\right]
v1=[4/53/5],v2=[3/5−4/5]
列空间+左零空间的标准正交基为 u 1 = 1 5 [ 1 2 ] , u 2 = 1 5 [ 2 − 1 ] \mathbf{u} 1=\frac{1}{\sqrt{5}}\left[\begin{array}{l}1 \\2\end{array}\right], \mathbf{u} 2=\frac{1}{\sqrt{5}}\left[\begin{array}{r}2 \\-1\end{array}\right] u1=51[12],u2=51[2−1] - 由于有零空间,必有
A
v
2
=
σ
2
u
2
\mathbf {A}\mathbf v_2=\sigma_2 \mathbf u_2
Av2=σ2u2中
σ
2
=
0
\sigma_2=0
σ2=0,则
Σ
=
[
σ
1
0
0
0
]
\boldsymbol{\Sigma}=\left[\begin{array}{cc}\sigma_1 & 0 \\0 & 0\end{array}\right]
Σ=[σ1000]
通过 A V = U Σ \boldsymbol{A}\boldsymbol{V} =\boldsymbol{U} \boldsymbol{\Sigma} AV=UΣ,一方面确定 σ 1 \sigma_1 σ1的值,另一方面确保向量 v i \mathbf{v}_i vi和 u i \mathbf{u}_i ui符号匹配
得到 σ 1 = 125 \sigma_1=\sqrt{125} σ1=125, V = 1 5 [ 4 3 3 − 4 ] \boldsymbol{V}=\frac{1}{5}\left[\begin{array}{cc}4 &3 \\3& -4\end{array}\right] V=51[433−4], U = 1 5 [ 1 2 2 − 1 ] \boldsymbol{U}=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}1 & 2 \\2& -1\end{array}\right] U=51[122−1]
最终,SVD分解结果: A = U Σ V T , [ 4 3 8 6 ] = 1 5 [ 1 2 2 − 1 ] [ 125 0 0 0 ] 1 5 [ 4 3 3 − 4 ] \boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T},\quad\left[\begin{array}{cc}4 & 3 \\8 & 6\end{array}\right]= \frac{1}{\sqrt{5}}\left[\begin{array}{cc}1 & 2 \\2& -1\end{array}\right] \left[\begin{array}{cc}\sqrt{125} & 0 \\0 & 0\end{array}\right] \frac{1}{5}\left[\begin{array}{cc}4 &3 \\3& -4\end{array}\right] A=UΣVT,[4836]=51[122−1][125000]51[433−4]
再次可见, A \boldsymbol{A} A的零空间向量(即 V \boldsymbol{V} V中的 v 2 = [ 3 / 5 − 4 / 5 ] \mathbf{v} 2=\left[\begin{array}{r}3/5\\-4/5\end{array}\right] v2=[3/5−4/5]),经过 A V = U Σ \boldsymbol{A}\boldsymbol{V} =\boldsymbol{U} \boldsymbol{\Sigma} AV=UΣ后,对应于 A \boldsymbol{A} A的左零空间向量(即 U \boldsymbol{U} U中的 u 2 = 1 5 [ 2 − 1 ] \mathbf{u} 2=\frac{1}{\sqrt{5}}\left[\begin{array}{r}2 \\-1\end{array}\right] u2=51[2−1]),也对应于 Σ \boldsymbol{\Sigma} Σ中的 σ 2 = 0 \sigma_2=0 σ2=0