关于loss.backward()optimizer.step()optimizer.zero_grad()的顺序

本文解析了使用PyTorch进行模型训练的核心步骤:梯度归零(optimizer.zero_grad())、反向传播(loss.backward())及参数更新(optimizer.step())。强调了这三步操作的正确顺序及其在训练过程中的作用。
摘要由CSDN通过智能技术生成
    loss.backward()  #反向传播
    optimizer.step()  #更新参数
    optimizer.zero_grad() # 梯度归零

这三个函数的作用是
梯度归零(optimizer.zero_grad())
,然后反向传播计算得到每个参数的梯度值(loss.backward()),
最后通过梯度下降执行一步参数更新(optimizer.step())

关于这三个的顺序上

optimizer.zero_grad() # 梯度归零只能写在最开始或者最后面
loss.backward()要写在optimizer.step()之前。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值